[霍尔定理] AtCoder Regular Contest 076 F Exhausted?

版权声明:本文为博主原创文章,未经博主允许随意转载。 https://blog.csdn.net/u014609452/article/details/73740964

霍尔定理 有完美匹配必然有任意 |S||N(S)|
那么这题答案就是max{S|N(S)|}

我们枚举N(S),必然是xsxt的形式
那么对其有贡献的i,满足Lis<tRi
直接扫描线

注意特殊讨论N(S)是全集的情况 这样的话不用满足Lis<tRi,值就是nm

#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<vector>
#define pb push_back
using namespace std;

inline char nc(){
  static char buf[100000],*p1=buf,*p2=buf;
  return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline void read(int &x){
  char c=nc(),b=1;
  for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
  for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
}

const int N=200005;

int T[N<<2],F[N<<2];
inline void Build(int x,int l,int r){
  if (l==r) return void(T[x]=l);
  int mid=(l+r)>>1; Build(x<<1,l,mid); Build(x<<1|1,mid+1,r);
  T[x]=max(T[x<<1],T[x<<1|1]);
}
inline void Add(int x,int l,int r,int ql,int qr){
  if (ql<=l && r<=qr){
    T[x]++; F[x]++; return;
  }
  int mid=(l+r)>>1;
  if (ql<=mid) Add(x<<1,l,mid,ql,qr);
  if (qr>mid) Add(x<<1|1,mid+1,r,ql,qr);
  T[x]=F[x]+max(T[x<<1],T[x<<1|1]);
}
inline int Query(int x,int l,int r,int ql,int qr){
  if (ql<=l && r<=qr)
    return T[x];
  int mid=(l+r)>>1,ret=0;
  if (ql<=mid) ret=max(ret,Query(x<<1,l,mid,ql,qr));
  if (qr>mid) ret=max(ret,Query(x<<1|1,mid+1,r,ql,qr));
  return ret+F[x];
}

int n,m;
vector<int> R[N];

int main(){
  int x,y;
  freopen("t.in","r",stdin);
  freopen("t.out","w",stdout);
  read(n); read(m);
  for (int i=1;i<=n;i++) read(x),read(y),R[x].pb(y);
  int ans=0; Build(1,0,m+1);
  for (int i=0;i<=m;i++){
    for (int x:R[i])
      Add(1,0,m+1,0,x);
    ans=max(ans,Query(1,0,m+1,i+1,m+1)-i-m-1);
  }
  printf("%d\n",max(n-m,ans));
  return 0;
}
阅读更多

没有更多推荐了,返回首页