web挖掘之Apriori算法 JAVA实现

本文介绍了Apriori算法的基础知识,包括其原理、连接步和剪枝步,通过一个商场交易记录的例子详细阐述了算法的运行过程,并给出了Apriori算法的JAVA实现,以及如何从频繁项集生成关联规则。最后,讨论了置信度阈值对生成强规则的影响。
摘要由CSDN通过智能技术生成

博主初次接触数据挖掘方面的研究,从最经典最基础的Apriori算法编起,不过这是博主前几个月写的了,所以现在也是凭印象写的,有些粗糙,还请谅解。

下面讲解部分为转载

1 Apriori介绍
Apriori算法使用频繁项集的先验知识,使用一种称作逐层搜索的迭代方法,k项集用于探索(k+1)项集。首先,通过扫描事务(交易)记录,找出所有的频繁1项集,该集合记做L1,然后利用L1找频繁2项集的集合L2,L2找L3,如此下去,直到不能再找到任何频繁k项集。最后再在所有的频繁集中找出强规则,即产生用户感兴趣的关联规则。
其中,Apriori算法具有这样一条性质:任一频繁项集的所有非空子集也必须是频繁的。因为假如P(I)< 最小支持度阈值,当有元素A添加到I中时,结果项集(A∩I)不可能比I出现次数更多。因此A∩I也不是频繁的。
2 连接步和剪枝步
在上述的关联规则挖掘过程的两个步骤中,第一步往往是总体性能的瓶颈。Apriori算法采用连接步和剪枝步两种方式来找出所有的频繁项集。
1) 连接步
为找出Lk(所有的频繁k项集的集合),通过将Lk-1(所有的频繁k-1项集的集合)与自身连接产生候选k项集的集合。候选集合记作Ck。设l1和l2是Lk-1中的成员。记li[j]表示li中的第j项。假设Apriori算法对事务或项集中的项按字典次序排序,即对于(k-1)项集li,li[1] 小于li[2]<……….li[k-1]。将Lk-1与自身连接,如果(l1[1]=l2[1])&&( l1[2]=l2[2])&&……..&& (l1[k-2]=l2[k-2])&&(l1[k-1]小于l2[k-1]),那认为l1和l2是可连接。连接l1和l2 产生的结果是{l1[1],l1[2],……,l1[k-1],l2[k-1]}。
2) 剪枝步
CK是LK的超集,也就是说,CK的成员可能是也可能不是频繁的。通过扫描所有的事务(交易),确定CK中每个候选的计数,判断是否小于最小支持度计数,如果不是,则认为该候选是频繁的。为了压缩Ck,可以利用Apriori性质:任一频繁项集的所有非空子集也必须是频繁的,反之,如果某个候选的非空子集不是频繁的,那么该候选肯定不是频繁的,从而可以将其从CK中删除。
(Tip:为什么要压缩CK呢?因为实际情况下事务记录往往是保存在外存储上,比如数据库或者其他格式的文件上,在每次计算候选计数时都需要将候选与所有事务进行比对,众所周知,访问外存的效率往往都比较低,因此Apriori加入了所谓的剪枝步,事先对候选集进行过滤,以减少访问外存的次数。)

3 Apriori算法实例
交易ID 商品ID列表
T100 I1,I2,I5
T200 I2,I4
T300 I2,I3
T400 I1,I2,I4
T500 I1,I3
T600 I2,I3
T700 I1,I3
T800 I1,I2,I3,I5
T900 I1,I2,I3
上图为某商场的交易记录,共有9个事务,利用Apriori算法寻找所有的频繁项集的过程如下:

详细介绍下候选3项集的集合C3的产生过程:从连接步,首先C3={ {I1,I2,I3},{I1,I2,I5},{I1,I3,I5},{I2,I3,I4},{I2,I3,I5},{I2,I4,I5}}(C3是由L2与自身连接产生)。根据Apriori性质,频繁项集的所有子集也必须频繁的,可以确定有4个候选集{I1,I3,I5},{I2,I3,I4},{I2,I3,I5},{I2,I4,I5}}不可能时频繁的,因为它们存在子集不属于频繁集,因此将它们从C3中删除。注意,由于Apriori算法使用逐层搜索技术,给定候选k项集后,只需检查它们的(k-1)个子集是否频繁。
3. Apriori伪代码

算法:Apriori
输入:D - 事务数据库;min_sup - 最小支持度计数阈值
输出:L - D中的频繁项集
方法:
     L1=find_frequent_1-itemsets(D); // 找出所有频繁1项集
     For(k=2;Lk-1!=null;k++){
        Ck=apriori_gen(Lk-1); // 产生候选,并剪枝
        For each 事务t in D{ // 扫描D进行候选计数
            Ct =subset(Ck,t); // 得到t的子集
            For each 候选c 属于 Ct
                         c.count++;
        }
        Lk={c属于Ck | c.count>=min_sup}
}
Return L=所有的频繁集;

Procedure apriori_gen(Lk-1:frequent(k-1)-itemsets)
      For each项集l1属于Lk-1
              For each项集 l2属于Lk-1
                       If((l1[1]=l2[1])&&( l1[2]=l2[2])&&……..
&& (l1[k-2]=l2[k-2])&&(l1[k-1]<l2[k-1])) then{
                   c=l1连接l2 //连接步:产生候选
                   if has_infrequent_subset(c,Lk-1) then
                       delete c; //剪枝步:删除非频繁候选
                   else add c to Ck;
                  }
          Return Ck;

     Procedure has_infrequent_sub(c:candidate k-itemset; Lk-1:frequent(k-1)-itemsets)
        For each(k-1)-subset s of c
            If s不属于Lk-1 then
               Return true;
        Return false;

4. 由频繁项集产生关联规则
Confidence(A->B)=P(B|A)=support_count(AB)/support_count(A)
关联规则产生步骤如下:
1) 对于每个频繁项集l,产生其所有非空真子集;
2) 对于每个非空真子集s,如果support_count(l)/support_count(s)>=min_conf,则输出 s->(l-s),其中,min_conf是最小置信度阈值。
例如,在上述例子中,针对频繁集{I1,I2,I5}。可以产生哪些关联规则?该频繁集的非空真子集有{I1,I2},{I1,I5},{I2,I5},{I1 },{I2}和{I5},对应置信度如下:
I1&&I2->I5 confidence=2/4=50%
I1&&I5->I2 confidence=2/2=100%
I2&&I5->I1 confidence=2/2=100%
I1 ->I2&&I5 confidence=2/6=33%
I2 ->I1&&I5 confidence=2/7=29%
I5 ->I1&&I2 confidence=2/2=100%
如果min_conf=70%,则强规则有I1&&I5->I2,I2&&I5->I1,I5 ->I1&&I2。

JAVA代码原创,不过写的时候也是参照了部分前辈的代码,所以可能会有相似的地方,附带注释,希望大家能看懂

//Apriori频繁集生成和关联规则生成文件
package test;

import java.util.*;
import java.util.Map.Entry;
/*
 * *主要用来实现Apriori算法的频繁集挖掘与关联规则产生
 * author——郭川
 */
public class Apriori_data {
    private int countDatabase;//事务数据库中事务数量
    private Integer minSup; //最小支持度
    private Float minCon;   //最小置信度
    private Map<Integer, Set<String>> database;//事务数据库


    private Map<Set<String>, Integer> frequItemSets;//频繁项集
    private Map<Integer,Map<Set<String>, Integer>> freshFrequItemSets;//备用频繁项集
    private HashMap<Set<String>, Set<Set<String>>> associationRules;//产生的关联规则
    /*
     * 构造函数
     */
    public Apriori_data( Map<Integer, Set<String>> database,
                         Integer minSup,
                         Float minCon ) {
        this.minSup = minSup;
        this.minCon = minCon;
        this.database = database;
        countDatabase = database.size();
        frequItemSets = new HashMap<Set<String>, Integer>();
        associationRules = new HashMap<Set<String>, Set<Set<String>>>();    
        freshFrequItemSets = new HashMap<Integer, Map<Set<String>, Integer>>();
    }
    /*
     * 扫描事务集,计算频繁集1-
     * frequItemSet1存储第一个频繁项集
     * candiItemSet1存储第一个候选集
     */
    public HashMap<Set<String>, Integer> genFrequItemSets1(){
        HashMap<Set<String>, Integer>frequItemSet1 = new HashMap<Set<String>, Integer>();
        HashMap<Set<String>, Integer>candiItemSet1 = new HashMap<Set<String>, Integer>();
        candiItemSet1 = genCandiFrequ1();
        //
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值