一位码农的几点思考

我们在使用一些很复杂的系统。我母亲曾说也许电视机后面就藏着个小矮人,每秒钟在屏幕上画出50幅不同的画,不过她并不关心这个(至少她都知道欧洲的电视机每秒是50帧的)。很多人压根儿就不在意身边的电器以及软件。不过科技的渗透将是大势所趋。电器会更加便宜,编程会更加简单,很快厕纸都会嵌入一次性的电脑在里面了(再配上一个好的应用)。脸部识别不再是NSA,CIA,KG或者Mosad的专利了,科技的传播也不再仅限于像Facebook,Google这样的大公司了。商店安装了摄像头以及人脸识别软件后可以识别出回头客,有助于提升商店的销量。人们开始习惯这些,我们搞IT的当然也一样,对吧?

说对了一半。不同之处在于我们会关心这些东西的工作原理是什么。我们知道屏幕里面有液晶,它们是通过低压信号来进行控制的(至少和以前的CRT屏比起来算低的),电视/烤箱/厕纸(这是未来的了)里面有个处理器,里面的程序是用某种编程语言来编写的,比如说Java。

我们这些搞Java的在编写这些应用的时候,不仅会用到语言本身(包括RT),还有一些底层的软件,框架。底层的这些框架是怎么工作的?我们需要去了解它们吗,还是直接去用只要能跑起来就OK了?

对框架了解的越多,你才能用得更好。

更好意味着更快,更可靠,写出的代码更容易向上兼容。但另一方面来说,你得先停下来进行学习然后才能开始使用它。如果你不去实际使用一个框架的话,它的细节你永远都不会清楚。

从另一方面来说,如果你对框架不了解就开始使用它,就好比在拿一个锤子在挖坑,而不是用铲去挖。只有我理解这些框架是如何实现的了,使用的时候才能感到比较有信心。这个时候我敢这么说:

如果我有时间,我可以自己实现这个框架。

当然我不会这么做,首先我没有这么多时间,其次更重要的是,已经开发得很好的东西,没必要再去实现一遍。但或许你会觉得:

我可以做得更好。

我经常听到一些初级的程序员,以及那些自认为已经不是初级程序员的人这么说。正确的态度应该是:

我可以做的更好,但我不会这么做。因为它已经实现好了,也足够好用。

你其实并不需要最好的。你需要的只是一个足够好的解决方案就可以了。如果已经没有额外的杠杆就没必要继续在这上面进行投资了。即便存在杠杆,但如果和投资其它领域相比要低的话,也没有必要再在这上面花费精力了。

说实话,当你能这么想的时候,也说明你已经是名老鸟了。

原创出处:一位码农的几点思考

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值