Pytorch 加载数据加速

利用DataPretcher加速

device = torch.device("cuda")

class DataPrefetcher():
    def __init__(self, loader):
        self.loader = iter(loader)
        self.stream = torch.cuda.Stream()
        self.preload()

    def preload(self):
        try:
            self.batch = next(self.loader)
        except StopIteration:
            self.batch = None
            return
        with torch.cuda.stream(self.stream):
            for k in self.batch:
                if k != 'meta':
                    self.batch[k] = self.batch[k].to(device=device, non_blocking=True)

    def next(self):
        torch.cuda.current_stream().wait_stream(self.stream)
        batch = self.batch
        self.preload()
        return batch

详情参考:https://tianws.github.io/skill/2019/08/27/gpu-volatile/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>