大数据常见算法题

一般采用分治法!,大文件映射成小文件

1. 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?

方案1:将大文件分成能够被内存加载的小文件。

可以估计每个文件安的大小为50G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。

s 遍历文件a,对每个url求取 ,然后根据所取得的值将url分别存储到1000个小文件(记为 )中。这样每个小文件的大约为300M。

s 遍历文件b,采取和a相同的方式将url分别存储到1000各小文件(记为 )。这样处理后,所有可能相同的url都在对应的小文件( )中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。

s 求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。

方案2:内存映射成BIT最小存储单元。

如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。

2. 有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。

方案1:

s 顺序读取10个文件,按照hash(query)%10的结果将query写入到另外10个文件(记为 )中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。

s 找一台内存在2G左右的机器,依次对 用hash_map(query, query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件(记为 )。

s 对 这10个文件进行归并排序(内排序与外排序相结合)。

方案2:

一般query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。这样,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。

方案3:

与方案1类似,但在做完hash,分成多个文件后,可以交给多个文件来处理,采用分布式的架构来处理(比如MapReduce),最后再进行合并。

//一般在大文件中找出出现频率高的,先把大文件映射成小文件,模1000,在小文件中找到高频的。

3. 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。

方案1:顺序读文件中,对于每个词x,取 ,然后按照该值存到5000个小文件(记为 )中。这样每个文件大概是200k左右。如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,知道分解得到的小文件的大小都不超过1M。对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100词及相应的频率存入文件,这样又得到了5000个文件。下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。

4. 海量日志数据,提取出某日访问百度次数最多的那个IP。

方案1:首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有 个IP。同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。

5. 在2.5亿个整数中找出不重复的整数,内存不足以容纳这2.5亿个整数。

方案1:采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存 内存,还可以接受。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。

方案2:也可采用上题类似的方法,进行划分小文件的方法。然后在小文件中找出不重复的整数,并排序。然后再进行归并,注意去除重复的元素。

6. 海量数据分布在100台电脑中,想个办法高校统计出这批数据的TOP10。

方案1:

s 在每台电脑上求出TOP10,可以采用包含10个元素的堆完成(TOP10小,用最大堆,TOP10大,用最小堆)。比如求TOP10大,我们首先取前10个元素调整成最小堆,如果发现,然后扫描后面的数据,并与堆顶元素比较,如果比堆顶元素大,那么用该元素替换堆顶,然后再调整为最小堆。最后堆中的元素就是TOP10大。

s 求出每台电脑上的TOP10后,然后把这100台电脑上的TOP10组合起来,共1000个数据,再利用上面类似的方法求出TOP10就可以了。

7. 怎么在海量数据中找出重复次数最多的一个?

方案1:先做hash,然后求模映射为小文件,求出每个小文件中重复次数最多的一个,并记录重复次数。然后找出上一步求出的数据中重复次数最多的一个就是所求(具体参考前面的题)。

8. 上千万或上亿数据(有重复),统计其中出现次数最多的钱N个数据。

方案1:上千万或上亿的数据,现在的机器的内存应该能存下。所以考虑采用hash_map/搜索二叉树/红黑树等来进行统计次数。然后就是取出前N个出现次数最多的数据了,可以用第6题提到的堆机制完成。

9. 1000万字符串,其中有些是重复的,需要把重复的全部去掉,保留没有重复的字符串。请怎么设计和实现?

方案1:这题用trie树比较合适,hash_map也应该能行。

10. 一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。

方案1:这题是考虑时间效率。用trie树统计每个词出现的次数,时间复杂度是O(n*le)(le表示单词的平准长度)。然后是找出出现最频繁的前10个词,可以用堆来实现,前面的题中已经讲到了,时间复杂度是O(n*lg10)。所以总的时间复杂度,是O(n*le)与O(n*lg10)中较大的哪一个。

11. 一个文本文件,找出前10个经常出现的词,但这次文件比较长,说是上亿行或十亿行,总之无法一次读入内存,问最优解。

方案1:首先根据用hash并求模,将文件分解为多个小文件,对于单个文件利用上题的方法求出每个文件件中10个最常出现的词。然后再进行归并处理,找出最终的10个最常出现的词。

12. 100w个数中找出最大的100个数。

方案1:在前面的题中,我们已经提到了,用一个含100个元素的最小堆完成。复杂度为O(100w*lg100)。

方案2:采用快速排序的思想,每次分割之后只考虑比轴大的一部分,知道比轴大的一部分在比100多的时候,采用传统排序算法排序,取前100个。复杂度为O(100w*100)。

方案3:采用局部淘汰法。选取前100个元素,并排序,记为序列L。然后一次扫描剩余的元素x,与排好序的100个元素中最小的元素比,如果比这个最小的要大,那么把这个最小的元素删除,并把x利用插入排序的思想,插入到序列L中。依次循环,知道扫描了所有的元素。复杂度为O(100w*100)。

13. 寻找热门查询:

搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。假设目前有一千万个记录,这些查询串的重复读比较高,虽然总数是1千万,但是如果去除重复和,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就越热门。请你统计最热门的10个查询串,要求使用的内存不能超过1G。

(1) 请描述你解决这个问题的思路;

(2) 请给出主要的处理流程,算法,以及算法的复杂度。

方案1:采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。

14. 一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到 个数中的中数?

方案1:先大体估计一下这些数的范围,比如这里假设这些数都是32位无符号整数(共有 个)。我们把0到 的整数划分为N个范围段,每个段包含 个整数。比如,第一个段位0到 ,第二段为 到 ,…,第N个段为 到 。然后,扫描每个机器上的N个数,把属于第一个区段的数放到第一个机器上,属于第二个区段的数放到第二个机器上,…,属于第N个区段的数放到第N个机器上。注意这个过程每个机器上存储的数应该是O(N)的。下面我们依次统计每个机器上数的个数,一次累加,直到找到第k个机器,在该机器上累加的数大于或等于 ,而在第k-1个机器上的累加数小于 ,并把这个数记为x。那么我们要找的中位数在第k个机器中,排在第 位。然后我们对第k个机器的数排序,并找出第 个数,即为所求的中位数。复杂度是 的。

方案2:先对每台机器上的数进行排序。排好序后,我们采用归并排序的思想,将这N个机器上的数归并起来得到最终的排序。找到第 个便是所求。复杂度是 的。

15. 最大间隙问题

给定n个实数 ,求着n个实数在实轴上向量2个数之间的最大差值,要求线性的时间算法。

方案1:最先想到的方法就是先对这n个数据进行排序,然后一遍扫描即可确定相邻的最大间隙。但该方法不能满足线性时间的要求。故采取如下方法:

s 找到n个数据中最大和最小数据max和min。

s 用n-2个点等分区间[min, max],即将[min, max]等分为n-1个区间(前闭后开区间),将这些区间看作桶,编号为 ,且桶 的上界和桶i+1的下届相同,即每个桶的大小相同。每个桶的大小为: 。实际上,这些桶的边界构成了一个等差数列(首项为min,公差为 ),且认为将min放入第一个桶,将max放入第n-1个桶。

s 将n个数放入n-1个桶中:将每个元素 分配到某个桶(编号为index),其中 ,并求出分到每个桶的最大最小数据。

s 最大间隙:除最大最小数据max和min以外的n-2个数据放入n-1个桶中,由抽屉原理可知至少有一个桶是空的,又因为每个桶的大小相同,所以最大间隙不会在同一桶中出现,一定是某个桶的上界和气候某个桶的下界之间隙,且该量筒之间的桶(即便好在该连个便好之间的桶)一定是空桶。也就是说,最大间隙在桶i的上界和桶j的下界之间产生 。一遍扫描即可完成。

16. 将多个集合合并成没有交集的集合:给定一个字符串的集合,格式如: 。要求将其中交集不为空的集合合并,要求合并完成的集合之间无交集,例如上例应输出 。

(1) 请描述你解决这个问题的思路;

(2) 给出主要的处理流程,算法,以及算法的复杂度;

(3) 请描述可能的改进。

方案1:采用并查集。首先所有的字符串都在单独的并查集中。然后依扫描每个集合,顺序合并将两个相邻元素合并。例如,对于 ,首先查看aaa和bbb是否在同一个并查集中,如果不在,那么把它们所在的并查集合并,然后再看bbb和ccc是否在同一个并查集中,如果不在,那么也把它们所在的并查集合并。接下来再扫描其他的集合,当所有的集合都扫描完了,并查集代表的集合便是所求。复杂度应该是O(NlgN)的。改进的话,首先可以记录每个节点的根结点,改进查询。合并的时候,可以把大的和小的进行合,这样也减少复杂度。

17. 最大子序列与最大子矩阵问题 数组的最大子序列问题:给定一个数组,其中元素有正,也有负,找出其中一个连续子序列,使和最大。

方案1:这个问题可以动态规划的思想解决。设 表示以第i个元素 结尾的最大子序列,那么显然 。基于这一点可以很快用代码实现。

最大子矩阵问题:给定一个矩阵(二维数组),其中数据有大有小,请找一个子矩阵,使得子矩阵的和最大,并输出这个和。

方案1:可以采用与最大子序列类似的思想来解决。如果我们确定了选择第i列和第j列之间的元素,那么在这个范围内,其实就是一个最大子序列问题。如何确定第i列和第j列可以词用暴搜的方法进行。


### 大数据开发常见面试问题及答案解析 在大数据领域,常见的面试问题通常涵盖多个方面,包括Hadoop生态系统、分布式计算框架(如Spark、Flink)、数据存储系统(如HBase、Hive)以及数据处理和优化技术。以下是一些高频出现的问题及其详细解析: #### 1. **HDFS的基本原理是什么?** HDFS 是 Hadoop 的核心组件之一,它是一个分布式文件系统,用于存储大规模数据[^4]。其基本原理包括: - **数据分块**:HDFS 将大文件分割成多个块,默认大小为 128MB,并将这些块分布在整个集群中。 - **高容错性**:为了确保数据的可靠性,每个数据块都会被复制到多个节点上,默认情况下是三个副本。 - **主从架构**:HDFS 使用 NameNode 和 DataNode 的结构。NameNode 负责管理元数据,而 DataNode 负责实际的数据存储。 #### 2. **Flink 和 Spark Streaming 的主要区别是什么?** Flink 和 Spark Streaming 都是用于流处理的框架,但它们的设计理念和实现方式有所不同[^2]: - **Flink**:基于事件驱动的实时处理引擎,能够提供低延迟和高吞吐量。Flink 的状态管理和窗口机制非常强大,适用于需要精确一次语义的应用场景。 - **Spark Streaming**:采用微批处理模型,即将连续的数据流分成小批次进行处理。虽然这种方法可以利用 Spark 的批处理能力,但在实时性和延迟方面不如 Flink。 #### 3. **Hive、Spark SQL 和 Presto 的区别是什么?** 这三者都是用于查询和分析大规模数据集的工具,但各有特点[^3]: - **Hive**:基于 Hadoop 的数据仓库工具,使用类 SQL 语句进行查询,适合处理大规模离线数据。Hive 查询会被转换为 MapReduce 或 Tez 任务执行。 - **Spark SQL**:Spark 生态系统中的模块,提供 SQL 查询接口,支持多种数据源,可以进行实时和离线数据分析。Spark SQL 利用了内存计算的优势,性能优于 Hive。 - **Presto**:由 Facebook 开发的分布式 SQL 查询引擎,专为快速查询大规模数据设计。Presto 支持多种数据源,包括 HDFS、MySQL、Cassandra 等,且具有良好的扩展性和灵活性。 #### 4. **如何优化 Hive 查询性能?** 优化 Hive 查询可以从以下几个方面入手: - **分区和桶表**:通过对表进行分区或桶化,可以减少查询时扫描的数据量,提高查询效率。 - **压缩和存储格式**:选择合适的压缩算法和存储格式(如 ORC、Parquet)可以显著减小存储空间并提升 I/O 效率。 - **调整参数**:合理设置 Hive 的配置参数,例如 `hive.exec.reducers.bytes.per.reducer` 和 `hive.optimize.pruner`,以优化查询计划和资源利用率。 - **索引**:虽然 Hive 不支持传统意义上的索引,但可以通过创建物化视图或其他辅助结构来加速特定查询。 #### 5. **什么是 MapReduce?它的优缺点是什么?** MapReduce 是一种编程模型,主要用于处理和生成大规模数据集。它的工作流程分为两个阶段:Map 阶段和 Reduce 阶段。 - **优点**: - **可扩展性强**:可以在大量廉价硬件上运行,轻松扩展到数千个节点。 - **容错性好**:自动处理失败的任务,保证了作业的成功完成。 - **缺点**: - **延迟较高**:由于 MapReduce 是基于磁盘的计算模型,因此不适合实时处理。 - **编程复杂度高**:编写高效的 MapReduce 程序需要较多的代码和调试工作。 #### 6. **Spark 中的 RDD 和 DataFrame 有什么区别?** - **RDD**:弹性分布式数据集,是 Spark 最基础的数据抽象,提供了低层次的 API 操作。RDD 是类型化的,用户可以直接操作 JVM 对象。 - **DataFrame**:DataFrame 是基于 RDD 构建的高层抽象,类似于关系型数据库中的表,具有 schema 信息。DataFrame 提供了更简洁的 API,并且内部进行了大量的优化,例如 Catalyst 优化器会自动对查询计划进行优化。 #### 7. **Kafka 的作用是什么?它是如何工作的?** Kafka 是一个分布式流处理平台,广泛应用于构建实时数据管道和流应用。Kafka 的主要功能包括: - **消息队列**:Kafka 可以作为高性能的消息中间件,支持发布/订阅模式。 - **持久化存储**:Kafka 将消息持久化到磁盘,支持长时间的消息保留。 - **流处理**:Kafka Streams API 允许开发者直接在 Kafka 上进行流处理。 Kafka 的工作原理主要包括生产者、消费者和 broker。生产者将消息发送到指定的主题,broker 接收并存储消息,消费者从 broker 拉取消息进行处理。 #### 8. **HBase 的架构和特性是什么?** HBase 是一个分布式的、面向列的 NoSQL 数据库,适用于海量数据的随机读写。HBase 的架构主要包括以下几个组件: - **ZooKeeper**:负责协调和管理集群中的各个节点。 - **HMaster**:负责管理表和 RegionServer,处理客户端请求。 - **RegionServer**:负责管理一个或多个 Region,处理数据的读写请求。 HBase 的特性包括: - **强一致性**:HBase 提供了强一致性的读写操作。 - **水平扩展**:HBase 可以通过增加更多的 RegionServer 来扩展集群规模。 - **稀疏存储**:HBase 支持稀疏数据存储,节省存储空间。 #### 9. **什么是 Lambda 架构?为什么它在大数据中很重要?** Lambda 架构是一种用于处理大规模数据的架构模式,旨在同时支持批处理和实时处理。Lambda 架构的主要组成部分包括: - **批处理层**:处理历史数据,生成批处理视图。 - **速度层**:处理实时数据流,生成实时视图。 - **服务层**:合并批处理视图和实时视图,对外提供统一的查询接口。 Lambda 架构的重要性在于它可以兼顾数据的完整性和实时性,适用于需要同时处理历史数据和实时数据的场景。 #### 10. **如何监控和调优 Spark 应用程序?** 监控和调优 Spark 应用程序可以从以下几个方面入手: - **Spark UI**:通过 Spark UI 查看应用程序的运行情况,包括任务调度、执行时间和资源使用情况。 - **日志分析**:查看详细的日志信息,定位瓶颈和异常。 - **参数调优**:合理设置 Spark 的配置参数,例如 `spark.executor.memory` 和 `spark.sql.shuffle.partitions`,以优化性能。 - **数据倾斜处理**:识别并解决数据倾斜问题,例如通过重新分区或使用盐值来均匀分布数据。 ```python # 示例:Spark SQL 查询优化 from pyspark.sql import SparkSession # 创建 SparkSession spark = SparkSession.builder.appName("OptimizeQuery").getOrCreate() # 设置合理的 shuffle 分区数 spark.conf.set("spark.sql.shuffle.partitions", "8") # 读取 Parquet 格式的数据 df = spark.read.parquet("/path/to/data") # 执行查询 result = df.filter(df["column"] > 100).groupBy("category").count() # 显示结果 result.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值