LWC 67: 764. Largest Plus Sign

Problem:

In a 2D grid from (0, 0) to (N-1, N-1), every cell contains a 1, except those cells in the given list mines which are 0. What is the largest axis-aligned plus sign of 1s contained in the grid? Return the order of the plus sign. If there is none, return 0.

An “axis-aligned plus sign of 1s of order k” has some center grid[x][y] = 1 along with 4 arms of length k-1 going up, down, left, and right, and made of 1s. This is demonstrated in the diagrams below. Note that there could be 0s or 1s beyond the arms of the plus sign, only the relevant area of the plus sign is checked for 1s.

Examples of Axis-Aligned Plus Signs of Order k:

Order 1:
000
010
000

Order 2:
00000
00100
01110
00100
00000

Order 3:
0000000
0001000
0001000
0111110
0001000
0001000
0000000

Example 1:

Input: N = 5, mines = [[4, 2]]
Output: 2
Explanation:
11111
11111
11111
11111
11011
In the above grid, the largest plus sign can only be order 2. One of them is marked in bold.

Example 2:

Input: N = 2, mines = []
Output: 1
Explanation:
There is no plus sign of order 2, but there is of order 1.

Example 3:

Input: N = 1, mines = [[0, 0]]
Output: 0
Explanation:
There is no plus sign, so return 0.

Note:

• N will be an integer in the range [1, 500].
• mines will have length at most 5000.
• mines[i] will be length 2 and consist of integers in the range [0, N-1].
• (Additionally, programs submitted in C, C++, or C# will be judged with a slightly smaller time limit.)

Java版本：

    public int orderOfLargestPlusSign(int N, int[][] mines) {
int[][][] grid = new int[N][N][4];
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
for (int k = 0; k < 4; ++k) {
grid[i][j][k] = 1;
}
}
}

for (int[] mine : mines) {
int r = mine[0];
int c = mine[1];
for (int k = 0; k < 4; ++k) grid[r][c][k] = 0;
}

for (int i = 0; i < N; ++i) {
for (int j = 1; j < N; ++j) {
if (grid[i][j][0] == 1)
grid[i][j][0] += grid[i][j - 1][0];
}
for (int j = N - 2; j >= 0; --j) {
if (grid[i][j][1] == 1)
grid[i][j][1] += grid[i][j + 1][1];
}
}

for (int j = 0; j < N; ++j) {
for (int i = 1; i < N; ++i) {
if (grid[i][j][2] == 1)
grid[i][j][2] += grid[i - 1][j][2];
}
for (int i = N - 2; i >= 0; --i) {
if (grid[i][j][3] == 1)
grid[i][j][3] += grid[i + 1][j][3];
}
}

int ans = 0;
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
int order = Math.min(Math.min(grid[i][j][0], grid[i][j][1]), Math.min(grid[i][j][2], grid[i][j][3]));
ans = Math.max(ans, order);
}
}
return ans;
}

Python版本：

class Solution(object):
def orderOfLargestPlusSign(self, N, mines):
"""
:type N: int
:type mines: List[List[int]]
:rtype: int
"""
grid = [[1] * N for _ in range(N)]
lf = [[0] * N for _ in range(N)]
dn = [[0] * N for _ in range(N)]
rt = [[0] * N for _ in range(N)]
up = [[0] * N for _ in range(N)]

for i, j in mines: grid[i][j] = 0

for i in xrange(N):
for j in xrange(N):
if grid[i][j] == 1:
lf[i][j] = 1 if j == 0 else lf[i][j - 1] + 1
if grid[j][i] == 1:
dn[j][i] = 1 if j == 0 else dn[j - 1][i] + 1
for i in xrange(N):
for j in xrange(N - 1, -1, -1):
if grid[i][j] == 1:
rt[i][j] = 1 if j == N - 1 else rt[i][j + 1] + 1
if grid[j][i] == 1:
up[j][i] = 1 if j == N - 1 else up[j + 1][i] + 1

ans = 0
for i in xrange(N):
for j in xrange(N):
order = min(lf[i][j], rt[i][j], up[i][j], dn[i][j])
ans = max(ans, order)
return ans

Largest Plus Sign:数组中最长的十字

2018-01-22 18:15:22

764. Largest Plus Sign

2018-01-14 16:06:29

LeetCode | 764. Largest Plus Sign中等偏难 二维数组找规律题

2018-01-18 17:56:51

[Leetcode] 764. Largest Plus Sign 解题报告

2018-03-20 16:51:49

Linux kernel 版本号被记上了一个后缀"+" (plus sign)

2015-02-12 22:26:07

LeetCode | 732. My Calendar III 区域覆盖技巧题

2018-01-02 13:31:25

经典算法 | 给定数轴上点，寻找一个点到其他点的距离之和最小

2018-01-13 14:16:33

LeetCode | 754. Reach a Number 数学原理题解析与证明

2018-01-02 13:34:07

优化算法 | N皇后问题启发式算法局部搜索

2018-01-17 13:24:17

LeetCode | 748. Shortest Completing Word12_17

2017-12-21 19:50:49

不良信息举报

LWC 67: 764. Largest Plus Sign