Demon-初来驾到

这世界从来就只有强者的奋斗史,而没有弱者的墓志铭

LWC 67: 764. Largest Plus Sign

LWC 67: 764. Largest Plus Sign

传送门:764. Largest Plus Sign

Problem:

In a 2D grid from (0, 0) to (N-1, N-1), every cell contains a 1, except those cells in the given list mines which are 0. What is the largest axis-aligned plus sign of 1s contained in the grid? Return the order of the plus sign. If there is none, return 0.

An “axis-aligned plus sign of 1s of order k” has some center grid[x][y] = 1 along with 4 arms of length k-1 going up, down, left, and right, and made of 1s. This is demonstrated in the diagrams below. Note that there could be 0s or 1s beyond the arms of the plus sign, only the relevant area of the plus sign is checked for 1s.

Examples of Axis-Aligned Plus Signs of Order k:

Order 1:
000
010
000

Order 2:
00000
00100
01110
00100
00000

Order 3:
0000000
0001000
0001000
0111110
0001000
0001000
0000000

Example 1:

Input: N = 5, mines = [[4, 2]]
Output: 2
Explanation:
11111
11111
11111
11111
11011
In the above grid, the largest plus sign can only be order 2. One of them is marked in bold.

Example 2:

Input: N = 2, mines = []
Output: 1
Explanation:
There is no plus sign of order 2, but there is of order 1.

Example 3:

Input: N = 1, mines = [[0, 0]]
Output: 0
Explanation:
There is no plus sign, so return 0.

Note:

  • N will be an integer in the range [1, 500].
  • mines will have length at most 5000.
  • mines[i] will be length 2 and consist of integers in the range [0, N-1].
  • (Additionally, programs submitted in C, C++, or C# will be judged with a slightly smaller time limit.)

思路:
动态规划,分别记录4个方向上的最大连续1的个数。比如”1001111”, 每个位置出现的最大连续1的个数分别为:”1001234”,有了4个方向的最长连续1,order就是这四个方向的最小值,遍历每个位置的order,求出最大order即可。

Java版本:

    public int orderOfLargestPlusSign(int N, int[][] mines) {
        int[][][] grid = new int[N][N][4];
        for (int i = 0; i < N; ++i) {
            for (int j = 0; j < N; ++j) {
                for (int k = 0; k < 4; ++k) {
                    grid[i][j][k] = 1;
                }
            }
        }

        for (int[] mine : mines) {
            int r = mine[0];
            int c = mine[1];
            for (int k = 0; k < 4; ++k) grid[r][c][k] = 0;
        }

        for (int i = 0; i < N; ++i) {
            for (int j = 1; j < N; ++j) {
                if (grid[i][j][0] == 1)
                    grid[i][j][0] += grid[i][j - 1][0]; 
            }
            for (int j = N - 2; j >= 0; --j) {
                if (grid[i][j][1] == 1)
                    grid[i][j][1] += grid[i][j + 1][1];
            }
        }

        for (int j = 0; j < N; ++j) {
            for (int i = 1; i < N; ++i) {
                if (grid[i][j][2] == 1)
                    grid[i][j][2] += grid[i - 1][j][2];
            }
            for (int i = N - 2; i >= 0; --i) {
                if (grid[i][j][3] == 1)
                    grid[i][j][3] += grid[i + 1][j][3];
            }
        }

        int ans = 0;
        for (int i = 0; i < N; ++i) {
            for (int j = 0; j < N; ++j) {
                int order = Math.min(Math.min(grid[i][j][0], grid[i][j][1]), Math.min(grid[i][j][2], grid[i][j][3]));
                ans = Math.max(ans, order);
            }
        }
        return ans;
    }

Python版本:

class Solution(object):
    def orderOfLargestPlusSign(self, N, mines):
        """
        :type N: int
        :type mines: List[List[int]]
        :rtype: int
        """
        grid = [[1] * N for _ in range(N)]
        lf = [[0] * N for _ in range(N)]
        dn = [[0] * N for _ in range(N)]
        rt = [[0] * N for _ in range(N)]
        up = [[0] * N for _ in range(N)]

        for i, j in mines: grid[i][j] = 0

        for i in xrange(N):
            for j in xrange(N):
                if grid[i][j] == 1:
                    lf[i][j] = 1 if j == 0 else lf[i][j - 1] + 1
                if grid[j][i] == 1:
                    dn[j][i] = 1 if j == 0 else dn[j - 1][i] + 1
        for i in xrange(N):
            for j in xrange(N - 1, -1, -1):
                if grid[i][j] == 1:
                    rt[i][j] = 1 if j == N - 1 else rt[i][j + 1] + 1
                if grid[j][i] == 1:
                    up[j][i] = 1 if j == N - 1 else up[j + 1][i] + 1

        ans = 0
        for i in xrange(N):
            for j in xrange(N):
                order = min(lf[i][j], rt[i][j], up[i][j], dn[i][j])
                ans = max(ans, order)
        return ans
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014688145/article/details/79057276
个人分类: 算法竞赛
所属专栏: 算法集中营
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

LWC 67: 764. Largest Plus Sign

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭