wzy的博客

苦尽甘来

理解深度学习中的卷积

译自Tim Dettmers的Understanding Convolution in Deep Learning。有太多的公开课、教程在反复传颂卷积神经网络的好,却都没有讲什么是“卷积”,似乎默认所有读者都有相关基础。这篇外文既友好又深入,所以翻译了过来。文章高级部分通过流体力学量子力学等解...

2017-05-13 21:40:50

阅读数:5872

评论数:0

提高深度学习性能的四种方式

导语 我经常被问到诸如如何从深度学习模型中得到更好的效果的问题,类似的问题还有: 我如何提升准确度 如果我的神经网络模型性能不佳,我能够做什么? 对于这些问题,我经常这样回答,“我并不知道确切的答案,但是我有很多思路”,接着我会列出了我所能想到的所有或许能够给性能带来提升的思路。 ...

2017-05-13 21:13:59

阅读数:2155

评论数:0

均值问题and BN

今年过年之前,MSRA和Google相继在ImagenNet图像识别数据集上报告他们的效果超越了人类水平,下面将分两期介绍两者的算法细节。   这次先讲Google的这篇《Batch Normalization Accelerating Deep Network Training by Redu...

2017-05-13 20:37:57

阅读数:536

评论数:0

深度学习视觉领域常用数据集汇总

MNIST 深度学习领域的“Hello World!”,入门必备!MNIST是一个手写数字数据库,它有60000个训练样本集和10000个测试样本集,每个样本图像的宽高为28*28。此数据集是以二进制存储的,不能直接以图像格式查看,不过很容易找到将其转换成图像格式的工具。 最早的深度卷积...

2017-05-13 17:33:57

阅读数:611

评论数:1

【一图看懂】计算机视觉识别简史:从 AlexNet、ResNet 到 Mask RCNN (很好的普及文章--转载)

https://mp.weixin.qq.com/s/ZKMi4gRfDRcTxzKlTQb-Mw

2017-05-13 08:33:50

阅读数:1264

评论数:0

CNN浅析和历年ImageNet冠军模型解析

今天在这里我给大家讲解一些深度学习中卷积神经网络的原理和一些经典的网络结构 卷积神经网络原理浅析   卷积神经网络(Convolutional Neural Network,CNN)最初是为解决图像识别等问题设计的,当然其现在的应用不仅限于图像和视频,也可用于时间序列信号,比如音频信号、文本数据...

2017-04-18 20:30:44

阅读数:1658

评论数:0

机器学习和深度学习引用量最高的20篇论文(2014-2017)

机器学习和深度学习的研究进展正深刻变革着人类的技术,本文列出了自 2014 年以来这两个领域发表的最重要(被引用次数最多)的 20 篇科学论文,以飨读者。 机器学习,尤其是其子领域深度学习,在近些年来取得了许多惊人的进展。重要的研究论文可能带来使全球数...

2017-04-09 22:31:10

阅读数:916

评论数:0

深度学习流行网络与数据集

一. 常用网络        深度学习相关的几个比较著名的网络,AlexNet、VGG、GoogleNet、ResNet。 模型     AlexNet            VGG          GoogleNet       ResNet    ...

2017-04-09 21:36:00

阅读数:566

评论数:0

深度学习真的万能吗?理解深度学习的局限性

深度学习较其他机器学习方法在各类任务中都表现优异,各个机构或院校也花了巨大的精力和时间投入到深度学习,并取得了令人惊叹的成就。但深度学习近来也暴露出其内在缺陷,很多学界领军人物都在积极探讨解决办法和替代方案。因此本文力图阐述深度学习的局限性,引发更多对深度学习的思考。 人工智...

2017-04-06 08:22:34

阅读数:3508

评论数:1

Learning中的多类分类,多标签分类,多示例学习,多任务学习

多类分类(Multiclass Classification) 一个样本属于且只属于多个类中的一个,一个样本只能属于一个类,不同类之间是互斥的。 典型方法:One-vs-All or One-vs.-rest: 将多类问题分成N个二类分类问题,训练N个二类分类器,对第i个类来说,所有属于第i...

2017-03-17 11:31:43

阅读数:2712

评论数:0

什么是end-to-end神经网络?

来源:知乎 著作权归作者所有。 讨论: 张旭---------------------------------> 端到端指的是输入是原始数据,输出是最后的结果,原来输入端不是直接的原始数据,而是在原始数据中提取的特征,这一点在图像问题上尤为突出,因为图像像素数...

2017-03-17 11:30:09

阅读数:1341

评论数:0

Deep Learning方向的paper

个人阅读的Deep Learning方向的paper整理,分了几部分吧,但有些部分是有交叉或者内容重叠,也不必纠结于这属于DNN还是CNN之类,个人只是大致分了个类。目前只整理了部分,剩余部分还会持续更新。 一 RNN 1 Recurrent neural network ...

2017-03-17 11:27:06

阅读数:423

评论数:0

神经网络之梯度下降与反向传播(下)

一、符号与表示 本文介绍全连接人工神经网络的训练算法——反向传播算法(关于人工神经网络可参考“卷积神经网络简介”第二节)。反向传播算法是一种有监督训练算法。它本质上是梯度下降法(参考“上篇”)。人工神经网络的参数多且“深”,梯度计算比较复杂。在人工神经网络模型提出几十年后才有研究者发明了反向...

2017-03-10 11:31:21

阅读数:1815

评论数:0

神经网络之梯度下降与反向传播(上)

一、概述 对于一个函数,希望找到使函数值达到全局最小的自变量值。这是优化理论研究的问题。梯度下降法是一种基于函数一阶性质的优化算法。人工神经网络的训练主要采用梯度下降法,其计算过程中采用误差反向传播的方式计算误差函数对全部权值和偏置值的梯度。本文首先介绍梯度下降法,下篇将介绍反向传播算法并实...

2017-03-10 11:30:44

阅读数:858

评论数:0

卷积神经网络物体检测之感受野大小计算

学习RCNN系列论文时, 出现了感受野(receptive field)的名词, 感受野的尺寸大小是如何计算的,在网上没有搜到特别详细的介绍, 为了加深印象,记录下自己对这一感念的理解,希望对理解基于CNN的物体检测过程有所帮助。 1 感受野的概念   在卷积神经网络中,感受野的定义是...

2017-03-06 14:19:45

阅读数:601

评论数:0

人人都可以做深度学习应用:入门篇

作者:徐汉彬 链接:https://zhuanlan.zhihu.com/p/25381420 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 一、人工智能和新科技革命 2017年围棋界发生了一件比较重要事,Master(Alphago)以60连胜横...

2017-02-25 16:44:31

阅读数:4965

评论数:2

Yoshua Bengio等大神传授:26条深度学习经验

【编者按】8月初的蒙特利尔深度学习暑期班,由Yoshua Bengio、 Leon Bottou等大神组成的讲师团奉献了10天精彩的讲座,剑桥大学自然语言处理与信息检索研究组副研究员Marek Rei参加了本次课程,在本文中,他精炼地总结了学到的26个有代表性的知识点,包括分布式表示,tricks...

2017-01-13 16:53:26

阅读数:556

评论数:0

深度学习入门(写的很好)

作者:jacky yang 链接:https://www.zhihu.com/question/26006703/answer/129209540 来源:知乎 著作权归作者所有,转载请联系作者获得授权。 关于深度学习,网上的资料很多,不过貌似大部分都不太适合初学者。 这里有几个原因:...

2017-01-13 16:30:49

阅读数:4608

评论数:1

怎样找到一份深度学习的工作(附学习材料,资源与建议)

原文地址:How to get a job in deep learning  原文翻译与校对:@戴丹 && @胡杨 && 寒小阳  时间:2016年10月。  出处:http://blog.csdn.net/han_xiaoyang/article/details...

2017-01-13 16:27:32

阅读数:958

评论数:0

深度学习精选干货文章

http://mp.weixin.qq.com/s/NZniLb2jz6_677gx56SJpQ

2017-01-13 16:26:25

阅读数:435

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭