小白o11
码龄11年
求更新 关注
提问 私信
  • 博客:8,132
    8,132
    总访问量
  • 暂无
    原创
  • 4
    粉丝
  • 6
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
加入CSDN时间: 2014-04-14
博客简介:

u014711234的博客

查看详细资料
个人成就
  • 获得2次点赞
  • 内容获得1次评论
  • 获得7次收藏
  • 博客总排名467,456名
创作历程
  • 6篇
    2017年
TA的专栏
  • 图像处理面试
    1篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

创作活动更多

『技术文档』写作方法征文挑战赛

在技术的浩瀚海洋中,一份优秀的技术文档宛如精准的航海图。它是知识传承的载体,是团队协作的桥梁,更是产品成功的幕后英雄。然而,打造这样一份出色的技术文档并非易事。你是否在为如何清晰阐释复杂技术而苦恼?是否纠结于文档结构与内容的完美融合?无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

55人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

写在SVM之前——凸优化与对偶问题

本篇是写在SVM之前的关于优化问题的一点知识,在SVM中会用到。考虑到SVM之复杂,将其中优化方面基础知识提出,单作此篇。所以,本文也不会涉及优化问题的许多深层问题,只是个人知识范围内所了解的SVM中涉及到的优化问题基础。一、凸优化问题在优化问题中,凸优化问题由于具有优良的性质(局部最优解即是全局最优解),受到广泛研究。对于一个含约束的优化问题:{minxf
转载
发布博客 2017.08.13 ·
766 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

SVM之解决线性不可分

上一篇SVM之核函数介绍了通过计算样本核函数,实际上将样本映射到高维空间以望使其线性可分的方法,一定程度上解决了线性不可分问题,但并不彻底。现在,换个思路,对于线性不可分问题不再千方百计的变换数据使其线性可分,对于有些数据,找到合适的变换可能是相当困难的。我们允许数据线性不可分,允许得到的分类器对一些样本而言不“完美”,但分类器得为自己的不“完美”付出代价,它要受到惩罚!考虑之前线
转载
发布博客 2017.08.13 ·
4080 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

SVM之核函数

上一篇SVM之对偶问题中讨论到,SVM最终形式化为以下优化问题(1){maxα∑iαi−12∑i,jαiαjyiyjs.t.{αi≥0∑iαiyi=0而且最终的判别式可以写成(2)wTx+b=∑iαiyi+b之前已对(1)的求解做了简单提及,需要注意的是,优化问题(1)虽然可以直接求解,但是要基于训练数据线性可分的基础,如果数据本身线性不可分呢?解决
转载
发布博客 2017.08.13 ·
499 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

SVM之对偶问题

前一篇SVM之问题形式化中将最大间隔分类器形式化为以下优化问题:(1){minw,b12∥w∥2s.t.yi(wTxi+b)≥1容易发现这是一个凸优化问题,而凸优化问题问题一般而言是满足Slater条件的(具体证明我也不懂),所以可以等价地求解其对偶问题。转而求解其对偶问题,是因为它的对偶问题有很好的形式(向量内积形式),可以为SVM很方便的引人核函数。关于对偶问题的基本概念在
转载
发布博客 2017.08.13 ·
400 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

SVM之问题形式化

VM内容繁多,打算用五篇文章来记述。SVM之问题形式化描述给出SVM的问题描述与基本模型;SVM之对偶问题将SVM求解转换为对偶问题的求解;SVM之核函数描述了SVM引人核函数进行特征向高维映射的过程;SVM之解决线性不可分描述了SVM对线性不可分数据的处理方法;另外,写在SVM之前——凸优化与对偶问题本身与SVM无关,但涉及了SVM优化问题求解的基础,是SVM之对偶问题和SVM之解决线性不可分的
转载
发布博客 2017.08.13 ·
846 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

图像处理面试

图像处理面试
转载
发布博客 2017.07.24 ·
1541 阅读 ·
2 点赞 ·
0 评论 ·
15 收藏