文章目录

每日一句正能量
一个人总有一天会明白,忌妒是无用的,而模仿他人无异于自杀。因为不论好坏,人只有自己才能帮助自己,只有耕种自己的田地,才能收获自家的玉米。上天赋予你的能力是独一无二的,只有当你自己努力尝试和运用时,才知道这份能力到底是什么。
引言
在当今数字化时代,数据已成为企业的重要资产。然而,随着数据量的爆炸性增长,如何有效地管理和利用这些数据成为了一个关键挑战。大数据治理应运而生,它不仅帮助企业优化数据管理,还能提升决策的准确性和业务的效率。
一、大数据治理的定义
大数据治理是指在大数据环境中,通过一系列政策、流程和技术手段,对数据进行统一管理,确保数据资产的高效利用和合规性。它涵盖了数据的获取、处理、存储、安全等各个环节,旨在通过优化和提升大数据的架构、质量、标准、安全等技术指标,显著推动大数据的服务创新。
二、大数据治理的核心原则
- 战略一致性原则:大数据治理策略应与组织的整体战略目标保持一致,支持业务发展和市场竞争。
- 数据质量原则:强调数据的准确性、完整性、一致性、时效性和可靠性,建立数据质量评估标准和监测机制。
- 数据安全与隐私保护原则:保护数据的机密性、完整性和可用性,防止数据泄露和未经授权的访问。
- 数据可用性原则:确保数据能够被相关人员在需要时方便、快捷地获取和使用。
- 数据治理责任明确原则:清晰定义数据的所有者、管理员、使用者等角色及其相应的责任和权限。
- 持续改进原则:大数据治理是一个不断发展和完善的过程,需要持续监测和评估治理效果。
三、大数据治理的应用案例
案例一:大型零售企业的数据质量管理
🏪 背景介绍
A公司是一家大型零食连锁专卖店,在上海市有28家门店,主要经营进口食品、零食和休闲食品。各门店的商品由A总部仓库统一派送。由于商品种类繁多,数量大,过去仅对部分重点商品进行库存管理与分析,导致经常出现缺货与库存积压的情况。
🔍 我们要解决的问题是:通过对库存分析,合理控制库存,加速资金周转,达成大区业绩增长的目标。
💡 商品库存分析思路
商品库存分析主要围绕两个问题:
是否会缺货?
库存量是否过大,出现库存积压,占用资金?
📊 数据分析过程
首先,我们查看所有商品的库存金额、库存量、库存周转天数等指标。然后,从宏观到微观层层深入地对商品结构进行分析,分别为有效库存与无效库存分析、ABC类别分析和品类分析三大结构。
📊 有效库存与无效库存分析
使用库存分析表,将是否有效库存商品转化为维度后拖入横轴,将库存量拖入纵轴,图表选用饼图,得到了有效库存占比图,无效库存占比仅为2.47%。
📊 ABC类别分析
按照累计销售额的60%、30%和剩余的10%分别定为A类、B类和C类商品。制作了三张图表,分别展示了ABC类商品库存量、库存金额和库存周转天数。发现B类的库存量相对C类较多,而库存周转天数较大,周转较慢,后续可对B类重点分析。
📊 品类分析
创建组件,并创建钻取目录,命名为”品类”,将大类和中类都添加到品类中,将品类拖入到横轴,将库存金额、库存量、库存周转天数拖入纵轴,使用分区柱形图,通过与上图的联动可看到ABC类商品的品类分布情况。
📊 结论
通过以上分析,我们发现B类商品的库存量较大,周转较慢,可能是导致缺货和库存积压的主要原因。后续可以对B类商品进行重点分析,优化库存管理,提高资金周转效率。
这些数据之间存在着不一致、缺失、重复的情况,导致了数据质量低下。为了解决这一问题,企业实施了一套全新的数据治理方案,通过DataFocus数仓进行数据接入、清洗、处理和存储,显著提升了数据的完整性和一致性。
案例二:金融行业的数据治理
在当今的金融行业中,大数据的应用已经成为银行提升竞争力、推动业务发展的重要手段。通过深入分析Itau银行、美国银行、富国银行、TD银行、中国信托和中国建设银行等顶尖银行的大数据应用案例,我们可以看到这些银行在大数据战略和实践方面的独特之处。它们通过构建以数据为核心的业务模式,实现了从数据治理到数据应用的全方位发展,从而在提升客户体验、优化风险管理和增强运营效率等方面取得了显著成效。
📊 数据战略:这些银行明确将数据作为业务发展的核心资产,推动了数据驱动的决策制定和业务创新。
🔄 数据整合与应用:通过整合内外部数据资源,银行能够更精准地理解客户需求,实现个性化服务和产品推荐,同时加强了风险控制和市场响应速度。
🛡️ 数据治理:建立完善的数据治理体系,确保数据的质量和安全,为数据的有效利用提供了坚实的基础。
💻 数据系统与工具:运用先进的技术和工具,如大数据分析平台和云计算,提升了数据处理和分析的能力,支持了复杂的数据处理需求。
以下是这些银行在大数据应用方面的主要实践和启示的详细总结:
Itau银行:通过数据战略转型,实现了数据治理和数据架构的优化,推动了业务用例的实施,创造了约20亿美元的潜在业务收益。
美国银行:面对监管和成本压力,简化数据架构,统一数据来源,提升了数据质量和降低了成本。
富国银行:实施了为期5年的”Core” IT项目,促进了降本增效,并支持了全客户视图的实现。
TD银行:启动了大规模的客户数据整合和转型计划,预期在五年内提升价值12亿美金。
中国XT:将数据战略与业务战略紧密结合,通过数据治理和数据系统建设,支持了全行应用。
中国JS银行:构建了开放的金融数据云平台,通过数据服务、分析服务和应用服务,形成了合作共赢的数据生态系统。
这些银行通过大数据的应用,不仅提升了自身的竞争力,也为整个行业的发展提供了宝贵的经验和启示。
银行在业务扩展过程中,发现数据质量低、数据安全存在漏洞等问题。通过实施大数据治理项目,选择Collibra作为大数据治理工具,支持数据目录、数据质量和数据安全保护等功能,显著提高了数据的准确性和安全性。
案例三:电商行业的数据治理
案例背景:某大型电商平台(以下简称电商平台C)在业务增长过程中,面临数据孤岛、数据不一致等问题。为了解决这些问题,电商平台C决定实施大数据治理项目。
解决方案:
- 需求分析:
- 目标明确:解决数据孤岛问题、提高数据一致性和透明度。
- 现状评估:评估当前数据治理的现状,识别主要问题和挑战。
- 需求收集:通过调查问卷和访谈,收集各部门的数据治理需求。
- 方案设计:
- 技术选型:选择 Alation 作为大数据治理工具,支持数据目录、数据搜索和数据质量评估等功能。
- 度量指标设计:设计了数据质量指标、数据安全指标和数据使用指标。
- 政策制定:发布数据治理政策和标准,确保数据治理的规范化。
- 项目实施:
- 团队组建:组建数据治理团队,明确每个成员的职责。
- 工具部署:在电商平台环境中部署 Alation,确保工具的稳定运行。
- 流程执行:按照设计的流程,逐步实施数据治理措施。
- 培训和支持:对团队成员进行培训,提供技术支持和资源保障。
4.效果评估:
- 数据质量评估:通过 Alation 的数据质量管理工具,数据一致性显著提高。
- 数据安全评估:数据保护措施的实施,显著降低了数据泄露和安全事件的发生。
- 数据使用评估:数据利用率和用户满意度显著提高,数据对业务决策的支持更加有力。
5.实施效果:
- 数据孤岛问题解决:通过数据治理,实现了数据的统一管理和共享,解决了数据孤岛问题。
- 数据一致性提升:数据一致性显著提高,跨部门数据的协调性和准确性得到保障。
- 业务效率提高:数据治理支持了更科学的业务决策,提高了运营效率,支持了电商平台C的快速发展。
电商平台在业务增长过程中,面临数据孤岛、数据不一致等问题。通过实施大数据治理项目,选择Alation作为大数据治理工具,支持数据目录、数据搜索和数据质量评估等功能,显著提高了数据的一致性和透明度。
四、大数据治理的实施框架
- 组织架构层面:设立专门的数据治理委员会或领导小组,明确数据治理办公室的职责,协调各部门之间的数据治理工作。
- 流程管理层面:制定数据规划、采集、存储、处理、分析、共享和销毁等全生命周期的管理流程。
- 技术支撑层面:选择合适的大数据技术架构和工具,如数据仓库、数据湖、数据治理平台等。
- 数据标准层面:建立统一的数据标准,确保数据在整个组织内具有一致性和可比性。
- 绩效评估层面:制定数据治理的绩效指标和评估方法,定期对数据治理工作进行评估和反馈。
五、总结
大数据治理是企业提升数据管理能力、优化决策支持、保障数据安全的关键手段。通过遵循核心原则和实施有效的治理框架,企业可以更好地管理数据资产,实现数据的高效利用和合规性。希望本文的介绍和案例分析能够为企业的数据治理实践提供有益的参考。
转载自:https://blog.csdn.net/u014727709/article/details/147429677
欢迎 👍点赞✍评论⭐收藏,欢迎指正