obsidian 多设备文件同步配置,不需要 iCloud,使用 webdav TeraCloud网盘改名字了,现在叫infini-cloud网盘**!!!我看了一下只换了个名字,其他的UI都没有变动,因此注册流程和之前都是一样的,原先的WebDAV Connection URL也没有发生变化!!!**
obsidian 多设备文件同步配置,不需要 iCloud,使用 webdav obsidian 多设备文件同步配置,不需要 iCloud,使用 webdav。支持mac windows 安卓 ios 多设备同步
zotero 多设备文件同步配置,不需要 iCloud,使用 webdav # 首先你需要申请一个网盘。日本的Teracloud:[https://teracloud.jp/](https://teracloud.jp/),网盘非常好用,有15g 空间,基本够用。**10G**原始空间 : 比坚果的大多了。领取额外**5G** 空间 :输入我的邀请码 **PV3EL** 还可以额外领取5g 空间。申请步骤:1、注册https://teracloud.jp/2、进入My Page界面,在“Enter friends Introduce code”处输入PV3EL3
Devonthink 3 pro 多设备文件同步配置,不需要 iCloud,使用 webdav 首先你需要申请一个网盘。日本的Teracloud:https://teracloud.jp/,网盘非常好用,有15g 空间,基本够用。10G原始空间 : 比坚果的大多了。领取额外5G 空间 :输入我的邀请码 PV3EL 还可以额外领取5g 空间。申请步骤:1、注册https://teracloud.jp/2、进入My Page界面,在“Enter friends Introduce code”处输入PV3EL3、拷贝 My Page 界面的 webdav 后面的网址devonthink 配
[转]deepin系统添加开机运行命令、软件自启动方法 https://wiki.deepin.org/wiki/%E8%87%AA%E5%90%AF%E5%8A%A8%E7%A8%8B%E5%BA%8F#.E4.BD.BF.E7.94.A8systemd.E6.89.A7.E8.A1.8Crc.local #!/bin/bash#rc.local config file created by usemiredoifconfigc...
spark submit参数及调试 原文:http://www.cnblogs.com/haoyy/p/6893943.htmlspark submit参数介绍你可以通过spark-submit --help或者spark-shell --help来查看这些参数。使用格式: ./bin/spark-submit \ --class <main-class> \ --master <master-url> ...
Spark快速大数据分析系列值第六章Spark编程进阶 共享变量累加器广播变量累加器提供了将工作节点中的值聚合到驱动器程序中的简单语法例子:计算空行数val sc = new SparkContext(...)val file = sc.textFile("file.txt")val blankLines = sc.accumulator(0) // 创建Accumulat
Spark快速大数据分析系列之第四章键值对操作 动机键值对形式的RDD提供了新的强大的操作接口键值对形式的RDD具有一个重要特性:分区。一些情况下可以显著提升性能创建Pair RDD读取外部数据时:如果外部数据本身是键值对形式的,读取回来的RDD也是键值对形式个普通的 RDD 转为 pair RDD 时,可以使用map()函数val pairs = lines.map(x => (x.split(" ")(0), x))
Spark快速大数据分析之第三章RDD编程 RDD基础RDD包含两种操作:转化操作:由一个 RDD 生成一个新的 RDD,采取惰性求值策略:不会马上进行运算,直到下一个行动操作才会运算行动操作:对 RDD 计算出一个结果,并把结果返回到驱动器程序中,或把结果存储到外部存储系统(如 HDFS)中惰性求值虽然你可以在任何时候定义新的 RDD,但 Spark 只会惰性计算这些 RDD。它们只有第一次在一个行动操作中
Spark运行架构 原文网址:http://www.cnblogs.com/shishanyuan/p/4721326.html1.术语定义lApplication:Spark Application的概念和Hadoop MapReduce中的类似,指的是用户编写的Spark应用程序,包含了一个Driver 功能的代码和分布在集群中多个节点上运行的Executor代码;lDriver:Spark中的Driver即运行...
Spark快速大数据分析之第二章Spark 下载与入门 2.1Spark下载与安装JDK的安装JDK的版本最好是1.8以上,使用的是ubuntu系统安装源 sudo add-apt-repository ppa:webupd8team/javasudo apt-get update安装jdksudo apt-get install oracle-java8-installersudo upd
spark高级数据分析系列之第三章音乐推荐和 Audioscrobbler 数据集 3.1数据集和整体思路数据集本章实现的是歌曲推荐,使用的是ALS算法,ALS是spark.mllib中唯一的推荐算法,因为只有ALS算法可以进行并行运算。使用数据集在这里,里面包含该三个文件:表一:user_artist_data.txt 包含该的是(用户ID、歌曲ID、用户听的次数) 表二:artist_data.txt 这个文件包含的是(歌曲ID,歌曲名字)表三:artist_ali...
spark高级数据分析系列之第二章用 Scala 和 Spark 进行数据分析 2.1数据科学家的Scalaspark是用scala语言编写的,使用scala语言进行大数据开发的好处有1、性能开销小减少不同环境下传递代码和数据的错误和性能开销2、能用上最新的版本和最好的功能Spark的新功能毫无疑问是首先适配scala语言,但使用spark的所有功能可不是那么容易3、有助于了解spark的原理2.2小试牛
第一个kaggle项目Digit Recognizer 为了这个寒假没那么颓废,也为考研的面试积累一点资本,所以在kaggle上面参加一下比赛来提高自己的水平。kaggle的注册一直验证不了,后来用yahoo的邮箱就ok了。第一个项目是一个练习项目:Digit Recognizer。主要是数字识别。我使用了scikit-learn,所以程序就很简单。 KNN的代码如下from sklearn.neighbors.nearest_centroid imp