大数据集的SVM训练方法 第一篇:SVM与MapReduce结合一:总体思路SVM算法在分布式云存储端进行训练,将训练后获得的支持向量合并,迭代以上两个过程直到收敛。也就是说数据是分为几个部分的,但是支持向量是全局支持向量二:背景介绍当面对训练数据集特别大的情况,有两种方法:1.减小特征向量的维度 如SVD,PCA,ICA(Independent component analysis),CFS(correlation bas
多种分类器 摘要本文共介绍了179中分类器,来自于17个不同的类别(辨别分析,贝叶斯神经网络,支持向量机,决策树,基于规则的分类器,boosting算法,随机森林,最近邻,主成分回归等等),使用不同的编程语音,UCI上的12个数据集和其他一些真实的数据,来获得关于分类器的有意义的结论。这其中分类效果最好的是随机深林(random forest),其次是SVM,神经网络和boosting ensembles。in
C++如何选择数据类型 1.当明确知晓数值不可能为负时,选用无符号类型。2.使用int执行整数运算。在实际应用中,short常常显得太小而long一般与int由相同的尺寸。如果你的数值超过了int的表示范围,选用long long。3.在算数表达式中不要使用char或者bool,只有在存放字符或者布尔值时才使用它们。因为类型char 在一些机器上是有符号的,而在另一些机器上又是无符号的,所以如果使用char 进行