通俗易懂,互联网的常见推荐算法

没有复杂的公式,没有晦涩的技术词汇,从最简易的案例,了解互联网最常见的推荐算法,每篇1分钟,保证弄懂。


一、《从电影推荐开始,聊协同过滤

  • 什么是协同过滤

  • 协同过滤的3步骤

  • 一张excel表格,秒懂协同过滤


二、《从职位推荐开始,聊内容推荐

  • 什么是基于内容的推荐

  • 基于内容的推荐的3步骤

  • 明明职位要求6000+,为啥会出3000+的推荐结果


三、《我不是潘金莲,聊相似性推荐

  • 没有用户行为数据,能不能做电影推荐

  • 相似度推荐的简易原理与实现

  • 如何计算《我不是潘金莲》与《芳华》的距离


四、《从啤酒与尿布,聊关联规则推荐

  • 什么是关联规则推荐

  • 没有公式,也能秒懂支持度、置信度、提升度

  • 一张excel表格,秒懂关联规则推荐


五、《“相同距离,不同价格”里的个性化推荐

  • 为什么相同起点,相同终点,价格却不同

  • 用户分级,个性化推荐秒懂

  • 杀熟与杀豪是个性化的两大利器


上周陪夫人生宝宝,晚上都没咋睡,停更了一周,抱歉。本周复更。


努力写“对技术人有帮助”的文章,求帮

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页