【机器学习】浅谈逻辑回归

本文详细介绍了Logistic回归、Softmax回归以及它们在多类别分类中的应用,包括OVR和OVO策略,以及Sigmoid函数的作用。同时涵盖了先验概率和后验概率的概念,以及模型的训练和优化过程。
摘要由CSDN通过智能技术生成

概述

Logistic回归和Softmax回归都是在采用逻辑回归的思想来解决分类问题。

逻辑回归是一种二分类模型,用于解决二分类问题。它通过将输入特征与权重相乘并加上偏置项,然后将结果通过一个Sigmoid函数(也称为Logistic函数)映射到0到1之间的概率值,用于预测样本属于某一类别的概率。

Softmax函数是一种常用的多类别分类激活函数。它可以将一组实数转化为概率分布,使得每个类别的概率值都在0到1之间且总和为1。Softmax函数的计算公式是对输入向量中的每个元素进行指数运算,然后将结果进行归一化。

Logistic Softmax是一种常用的分类模型,常用于多类别分类任务。它是基于Logistic Regression(逻辑回归)和Softmax函数的组合。
Logistic Softmax模型将逻辑回归和Softmax函数结合在一起,用于解决多类别分类问题。它通过将每个类别与一个权重向量相乘,并加上偏置项,然后将结果通过Softmax函数进行归一化,得到每个类别的概率值。最终,模型会预测样本属于概率最高的类别。

Logistic Softmax模型可以通过梯度下降等优化算法进行训练,调整权重和偏置项,使得模型能够更好地拟合训练数据,并在测试数据上进行准确的多类别分类预测。

几率(odd)

假设一个时间发生的概率为P,则
o d d = P 1 − P odd=\frac{P}{1-P} odd=1PP
二分类问题:一个问题发生和不发生就是一个最简单的二分类问题

logistic回归

逻辑回归是一种二分类模型,用于解决二分类问题。它通过将输入特征与权重相乘并加上偏置项,然后将结果通过一个Sigmoid函数(也称为Logistic函数)映射到0到1之间的概率值,用于预测样本属于某一类别的概率。
image.png
逻辑回归也可以处理多分类问题,先采用OVR思想将多分类问题转为多个二分类问题,再采用逻辑回归思想进行处理。

Logistic/sigmoid函数

  • 目的是求解参数 θ

p = h θ ( x ) = g ( θ T x ) = 1 1 + e − θ T x y = { 1 0   y ^ = { 1 , p > t h r e s h o l d 0 , p ≤ t h r e s h o l d \begin{gathered} p=h_{θ}(x)=g(θ^Tx)=\frac{1}{1+e^{-θ^Tx}} \quad \\y=\left\{\begin{array}{l}1\\ 0\end{array} \,\quad\quad \hat{y}=\{\begin{array}{l}1,p>threshold\\ 0,p≤threshold\end{array} \right.\\ \end{gathered} p=hθ(x)=g(θTx)=1+eθTx1y={10y^={1,p>threshold0,pthresholdimage.png

KaTeX parse error: {align} can be used only in display mode.
重要:sigmoid函数的导数等于它本身乘以1减去它本身
g ′ ( z ) = g ( z ) ( 1 − g ( z ) ) g'(z)=g(z)(1-g(z)) g(z)=g(z)(1g(z))

Logistic回归及似然函数

6fad90ef8445dabf3b269ffd57e92b4.jpg
29cad291db122fc2f151627c85b9c54.jpg

Softmax回归

  • softmax回归是logistic回归的一般化,适用于K分类的问题,针对每个类别都有一个参数向量θ,第k类类的参数为向量 θ k θ_{k} θk(特征),组成的二维矩阵为 θ k ∗ n θ_{k*n} θkn
  • softmax函数的本质就是将一个K维的任意实数向量压缩(映射)成另一个K维的实数向量,其中向量中的每个元素取值都介于(0, 1)之间。
  • softmax回归概率函数为:

p ( y = k ∣ x ; θ ) = e θ k T x ∑ l = 1 K e l T x , k = 1 , 2 , . . . , K p(y=k|x;θ)=\frac{e^{θ_{k}^Tx}}{\sum_{l=1}^{K}e_{l}^Tx} ,\quad k=1,2,...,K p(y=kx;θ)=l=1KelTxeθkTx,k=1,2,...,K

softmax算法原理

1d150c89fdccced4a64e459d31f1d78.jpg

Softmax算法损失函数

75d7ccc633bd8e384bb274ea01a0b01.jpg

OVO和OVR思想

OVO和OVR是两种不同的思想或理论。当面对多类别分类问题时,OVO和OVR思想提供了两种不同的方法来解决这个问题。

OVO(One-vs-One)思想是指在机器学习中,将多个类别的分类问题转化为多个二分类问题的思想。具体来说,对于有N个类别的问题,OVO思想会生成N(N-1)/2个分类器,每个分类器用于将其中两个类别进行区分。最终的分类结果通过投票或其他方式来确定。
OVO思想的优点是每个分类器只需要处理两个类别,因此训练和测试的时间复杂度相对较低。
然而,OVO思想需要生成大量的分类器,因此对于大规模问题,它可能会变得非常耗时和资源消耗。

OVR(One-vs-Rest)思想是指将多类别分类问题转化为多个二分类问题的思想。具体来说,对于有N个类别的问题,OVR思想会生成N个分类器,每个分类器用于将其中一个类别与其他所有类别进行区分。最终的分类结果是通过比较每个分类器的置信度或概率来确定。
OVR思想的优点是只需要生成N个分类器,因此在大规模问题上的计算复杂度较低。
然而,OVR思想可能会出现类别不平衡的问题,因为每个分类器只关注一个类别,可能导致某些类别的样本数量较少。

两种思想在实际应用中有不同的适用场景。
OVO思想通常适用于小规模的多类别分类问题,因为它需要生成大量的分类器,计算复杂度较高。
而OVR思想则适用于大规模的多类别分类问题,因为它只需要生成N个分类器,计算复杂度较低。
总的来说,OVO和OVR思想都是解决多类别分类问题的有效方法,选择哪种方法取决于具体的问题规模和需求。对于小规模问题,OVO思想可以提供更准确的分类结果,但计算复杂度较高。对于大规模问题,OVR思想可以提供较低的计算复杂度,但可能会受到类别不平衡的影响。

先验概率和后验概率

先验概率(Prior Probability)是指在考虑任何新证据之前,根据以往的经验或已有的知识,对一个事件或假设的概率进行估计。
后验概率(Posterior Probability)是指在考虑了新的证据或信息之后,根据贝叶斯定理重新计算得到的概率。
先验概率和后验概率是贝叶斯统计推断的基础。贝叶斯定理通过先验概率和条件概率来计算后验概率,从而更新对事件或假设的概率估计。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值