傅立叶变换Fourier Transform
傅立叶变换的推出
傅立叶变换是从傅立叶级数推广得到的,回顾一下傅立叶级数:
x(t)=Σ−∞+∞akejω0tx(t)=\Sigma_{-\infin}^{+\infin}a_ke^{j\omega_0t}x(t)=Σ−∞+∞akejω0t
ak=1T0∫T0x(t)e−jω0tdta_k=\frac1{T_0}\int_{T_0}x(t)e^{-j\omega_0t}dtak=T01∫T0x(t)e−jω0tdt
傅立叶级数针对的函数表达式是周期函数,
更一般地,傅立叶变换针对的函数是非周期函数,
当然我们可以抱着这样一个思想:一个非周期函数,其实也可以看作是周期函数,只不过其周期无限大。
定义(我们暂且先认为这是规定吧。尽管我相信傅立叶不是突然拍脑门想到这些玩意的。)
X(jω)=∫T0x(t)e−jωtdtX(j\omega)=\int_{T_0}x(t)e^{-j\omega t}dtX(jω)=∫T0x(t)e−jωtdt
根据上面的傅立叶级数的式子:
有ak=1T0X(jkω0)a_k=\frac1{T_0}X(jk\omega_0)ak=T01X(jkω0)
则有 x(t)=1T0Σ−∞+∞X(jkω0)ejkω0tx(t)=\frac1{T_0}\Sigma^{+\infin}_{-\infin}X(jk\omega_0)e^{jk\omega_0t}x(t)=T01Σ−∞+∞X(jkω0)ejkω0t,为了向黎曼积分的形式靠拢,将式子左右同乘w0w_0w0,可以得到:
x(t)=1ω0T0Σ−∞+∞X(jkω0)ejkω0tω0x(t)=\frac{1}{\omega_0T_0}\Sigma^{+\infin}_{-\infin}X(jk\omega_0)e^{jk\omega_0t}\omega_0x(t)=ω0T01Σ−∞+∞X(jkω0)ejkω0tω0
上文我们说了,非周期函数可以看成是周期无限大的周期函数,那么T→∞,就会有ω→0T\rightarrow \infin,就会有\omega\rightarrow 0T→∞,就会有ω→0。
那么上面的式子可以根据黎曼积分的形式写成:
x(t)=12π∫−∞+∞X(jω)ejwtdwx(t)=\frac1{2\pi}\int_{-\infin}^{+\infin}X(j\omega)e^{jwt}dwx(t)=2π1∫−∞+∞X(jω)ejwtdw
注:这里已经不需要写成kw的形式了,因为w是连续的变化的。
傅立叶变换对
因而整理出傅立叶变换对
x(t)=12π∫−∞+∞X(jω)ejwtdwx(t)=\frac1{2\pi}\int_{-\infin}^{+\infin}X(j\omega)e^{jwt}dwx(t)=2π1∫−∞+∞X(jω)ejwtdw
X(jω)=∫T0x(t)e−jωtdtX(j\omega)=\int_{T_0}x(t)e^{-j\omega t}dtX(jω)=∫T0x(t)e−jωtdt
我们可以把这个对和级数对做一个比较
x(t)=Σ−∞+∞akejω0tx(t)=\Sigma_{-\infin}^{+\infin}a_ke^{j\omega_0t}x(t)=Σ−∞+∞akejω0t
ak=1T0∫T0x(t)e−jω0tdta_k=\frac1{T_0}\int_{T_0}x(t)e^{-j\omega_0t}dtak=T01∫T0x(t)e−jω0tdt
其实可以感觉出X(jw)X(jw)X(jw)和aka_kak是怎么一回事。在规定T→∞T\rightarrow \infinT→∞的情况下,aka_kak变成一个无穷小量,这是没有意义且显然和现实世界不符合的(一个非周期信号的频谱显然不可能处处等于0,他总是在某些地方有些值)。因此,如果将这个式子变化一下:以TakTa_kTak为单位,这就是一个可以算出的量了,而这也就是X(jw)X(jw)X(jw)的由来。
综上,我们就建立了非周期函数时域频域的转换公式
时域:x(t)→X(jω):频域时域:x(t)\rightarrow X(j\omega):频域时域:x(t)→X(jω):频域
典型信号的傅立叶变换
1.e−atu(t)→ F 1a+jω1.e^{-at}u(t)\xrightarrow{\;F\;} \frac1{a+j\omega}1.e−atu(t)Fa+jω1
P.f
X(jw)=∫−∞+∞e−atu(t)e−jwtdt=∫0+∞e(−a−jw)tdt=−1a+jwe(−a−jw)t∣0∞=1a+jwX(jw)=\int_{-\infin}^{+\infin}e^{-at}u(t)e^{-jwt}dt\\=\int_0^{+\infin}e^{(-a-jw)t}dt\\=-\frac1{a+jw}e^{(-a-jw)t}|^\infin_0\\=\frac1{a+jw}X(jw)=∫−∞+∞e−atu(t)e−jwtdt=∫0+∞e(−a−jw)tdt=−a+jw1e(−a−jw)t∣0∞=a+jw1
2.δ(t)→ F 12.\delta(t)\xrightarrow{\;F\;}12.δ(t)F1
P.f
X(jw)=∫−∞+∞δ(t)e−jwtdt=e−jwt∣t=0=1X(jw)=\int_{-\infin}^{+\infin}\delta(t)e^{-jwt}dt\\=e^{-jwt}|_{t=0}=1X(jw)=∫−∞+∞δ(t)e−jwtdt=e−jwt∣t=0=1
3.1→ F 2πδ(ω)3.1\xrightarrow {\;F\;}2\pi\delta(\omega)3.1F2πδ(ω)
p.f(简单做法,右推左)
x(t)=12π∫−∞+∞2πδ(t)ejwtdt=ejwt∣当t=0=1x(t)=\frac1{2\pi}\int^{+\infin}_{-\infin}2\pi\delta(t)e^{jwt}dt\\=e^{jwt}|_{当t=0}=1x(t)=2π1∫−∞+∞2πδ(t)ejwtdt=ejwt∣当t=0=1
p.f(复杂做法,左推右)X(jw)=∫−∞+∞e−jwtdt=−1jwe−jwt∣−∞+∞=limN→∞(−1jwe−jwt∣−NN)=limN→∞1jw(ejwN−e−jwN)=limN→∞2sin(wN)w=2πδ(w)X(jw)=\int_{-\infin}^{+\infin}e^{-jwt}dt\\=-\frac1{jw}e^{-jwt}|^{+\infin}_{-\infin}\\=lim_{N\rightarrow\infin}(-\frac1{jw}e^{-jwt}|^N_{-N})\\=lim_{N\rightarrow\infin}\frac1{jw}(e^{jwN}-e^{-jwN})\\=lim_{N\rightarrow\infin}\frac{2sin(wN)}{w}=2\pi\delta(w)X(jw)=∫−∞+∞e−jwtdt=−jw1e−jwt∣−∞+∞=limN→∞(−jw1e−jwt∣−NN)=limN→∞jw1(ejwN−e−jwN)=limN→∞w2sin(wN)=2πδ(w)
这里运用了一个小结论:limw→∞sin(wt)t=πδ(t)lim_{w\rightarrow\infin}\frac{sin(wt)}{t}=\pi\delta(t)limw→∞tsin(wt)=πδ(t)
4.方波→ F EτSa(τω2)4.方波\xrightarrow{\;F\;}E\tau Sa(\frac{\tau \omega}2)4.方波FEτSa(2τω)
p.f
X(jw)=∫−τ2τ2Ee−jwtdt=Ejwe−jwt∣−τ2τ2=Ejw(ejwτ2−e−jwτ2)=Ejw×2jsin(wτ/2)=Eτsinc(τω2)X(jw)=\int_{-\frac{\tau}2}^{\frac{\tau}2}Ee^{-jwt}dt\\=\frac E{jw}e^{-jwt}|_{-\frac{\tau}2}^{\frac{\tau}2}\\=\frac E{jw}(e^{\frac{jw\tau}2}-e^{-\frac{jw\tau}2})\\=\frac E{jw}\times2jsin(w\tau/2)\\=E\tau sinc(\frac{\tau \omega}2)X(jw)=∫−2τ2τEe−jwtdt=jwEe−jwt∣−2τ2τ=jwE(e2jwτ−e−2jwτ)=jwE×2jsin(wτ/2)=Eτsinc(2τω)
5.sin(ωct)πt→ F 方波5.\frac{sin(\omega_ct)}{\pi t}\xrightarrow {\;F\;}方波5.πtsin(ωct)F方波
X(jω)=∫−∞+∞sin(ωct)πte−jωtdt=∫−∞+∞sin(ωct)πt(cos(ωt)−jsin(ωt))dt=∫−∞+∞sin(ωct)πtcos(ωt)dt−∫−∞+∞sin(ωct)πtjsin(ωt)dt=∫−∞+∞sin(ωct)πtcos(ωt)dt=12∫−∞+∞sin((ωc+ω)t)πtdt−12∫−∞+∞sin((ωc−ω)t)πtdt \begin{align*} X(j\omega) &= \int_{-\infty}^{+\infty} \frac{\sin(\omega_c t)}{\pi t} e^{-j\omega t} dt \\ &= \int_{-\infty}^{+\infty} \frac{\sin(\omega_c t)}{\pi t} (\cos(\omega t) - j\sin(\omega t)) dt \\ &= \int_{-\infty}^{+\infty} \frac{\sin(\omega_c t)}{\pi t} \cos(\omega t) dt - \int_{-\infty}^{+\infty} \frac{\sin(\omega_c t)}{\pi t} j\sin(\omega t) dt \\ &= \int_{-\infty}^{+\infty} \frac{\sin(\omega_c t)}{\pi t} \cos(\omega t) dt \\ &= \frac{1}{2} \int_{-\infty}^{+\infty} \frac{\sin((\omega_c + \omega)t)}{\pi t} dt - \frac{1}{2} \int_{-\infty}^{+\infty} \frac{\sin((\omega_c - \omega)t)}{\pi t} dt \end{align*} X(jω)=∫−∞+∞πtsin(ωct)e−jωtdt=∫−∞+∞πtsin(ωct)(cos(ωt)−jsin(ωt))dt=∫−∞+∞πtsin(ωct)cos(ωt)dt−∫−∞+∞πtsin(ωct)jsin(ωt)dt=∫−∞+∞πtsin(ωct)cos(ωt)dt=21∫−∞+∞πtsin((ωc+ω)t)dt−21∫−∞+∞πtsin((ωc−ω)t)dt
*一个结论:符号函数sig(t)=∫−∞+∞sin(wt)πtdt={1,w>0−1,w<0符号函数sig(t)=\int_{-\infin}^{+\infin}\frac {sin(wt)}{\pi t}dt=\begin{cases}1,& w>0\\-1,&w<0\end{cases}符号函数sig(t)=∫−∞+∞πtsin(wt)dt={1,−1,w>0w<0
那么可得sin(ωct)πt→ F {1,−wc<w<wc0,其他\frac{sin(\omega_ct)}{\pi t}\xrightarrow {\;F\;}\begin{cases}1,-w_c<w<w_c\\0,其他\end{cases}πtsin(ωct)F{1,−wc<w<wc0,其他
6.cos(ω0t)→ F π[δ(ω+ω0)+δ(ω−ω0)]6.cos(\omega_0t)\xrightarrow {\;F\;}\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]6.cos(ω0t)Fπ[δ(ω+ω0)+δ(ω−ω0)]
p.f
X(jω)=∫−∞+∞cos(ω0t)e−jωt dt=12∫−∞+∞(ejω0t+e−jω0t)e−jωt dt=12∫−∞+∞ej(ω0−ω)t dt+12∫−∞+∞e−j(ω0+ω)t dt=π[δ(ω+ω0)+δ(ω−ω0)] \begin{align*} X(j\omega) &= \int_{-\infty}^{+\infty} \cos(\omega_0 t) e^{-j\omega t} \, dt \\ &= \frac{1}{2} \int_{-\infty}^{+\infty} (e^{j\omega_0 t} + e^{-j\omega_0 t}) e^{-j\omega t} \, dt \\ &= \frac{1}{2} \int_{-\infty}^{+\infty} e^{j(\omega_0 - \omega)t} \, dt + \frac{1}{2} \int_{-\infty}^{+\infty} e^{-j(\omega_0 + \omega)t} \, dt \\ &= \pi [\delta(\omega + \omega_0) + \delta(\omega - \omega_0)] \end{align*} X(jω)=∫−∞+∞cos(ω0t)e−jωtdt=21∫−∞+∞(ejω0t+e−jω0t)e−jωtdt=21∫−∞+∞ej(ω0−ω)tdt+21∫−∞+∞e−j(ω0+ω)tdt=π[δ(ω+ω0)+δ(ω−ω0)]
7.sin(ω0t)→ F πj[δ(ω−ω0)−δ(ω+ω0)]7.sin(\omega_0t)\xrightarrow{\;F\;}\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]7.sin(ω0t)Fjπ[δ(ω−ω0)−δ(ω+ω0)]
p.f
X(jw)=∫−∞+∞sin(w0t)e−jwtdt=∫−∞+∞j2(e−jw0t−ejw0t)e−jwtdt=j2∫−∞+∞[e−j(w0+w)t−ej(w0−w)t]dt=j2[2πδ(w0+w)−2πδ(w−w0)]=πj[δ(ω−ω0)−δ(ω+ω0)] \begin{align*} X(jw)&=\int^{+\infin}_{-\infin}sin(w_0t)e^{-jwt}dt\\&=\int^{+\infin}_{-\infin}\frac j2(e^{-jw_0t}-e^{jw_0t})e^{-jwt}dt\\&=\frac j2\int^{+\infin}_{-\infin}[e^{-j(w_0+w)t}-e^{j(w_0-w)t}]dt\\&=\frac j2[2\pi\delta(w_0+w)-2\pi\delta(w-w_0)]\\&=\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)] \end{align*} X(jw)=∫−∞+∞sin(w0t)e−jwtdt=∫−∞+∞2j(e−jw0t−ejw0t)e−jwtdt=2j∫−∞+∞[e−j(w0+w)t−ej(w0−w)t]dt=2j[2πδ(w0+w)−2πδ(w−w0)]=jπ[δ(ω−ω0)−δ(ω+ω0)]
8.u(t)→ F 1jw+πδ(w)8.u(t)\xrightarrow{\;F\;}\frac1{jw}+\pi\delta(w)8.u(t)Fjw1+πδ(w)
p.f
x(t)=12π∫−∞+∞[1jw+πδ(ω)]ejwtdw=12π∫−∞+∞1jwejwtdw+12=12π∫−∞+∞1jwcos(wt)dw+12π∫−∞+∞1wsin(wt)dw+12={12ππ+12,t>012π(−π)+12,t<0=u(t) \begin{align*} x(t)&=\frac1{2\pi}\int_{-\infin}^{+\infin}[\frac1{jw}+\pi\delta(\omega)]e^{jwt}dw\\ &=\frac1 {2\pi}\int_{-\infin}^{+\infin}\frac1{jw}e^{jwt}dw+\frac12\\&=\frac1 {2\pi}\int_{-\infin}^{+\infin}\frac1{jw}cos(wt)dw+\frac1 {2\pi}\int_{-\infin}^{+\infin}\frac1wsin(wt)dw+\frac12\\&=\begin{cases}\frac1{2\pi}\pi+\frac12,t>0\\\frac1{2\pi}(-\pi)+\frac12,t<0\end{cases}\\&\\&=u(t) \end{align*} x(t)=2π1∫−∞+∞[jw1+πδ(ω)]ejwtdw=2π1∫−∞+∞jw1ejwtdw+21=2π1∫−∞+∞jw1cos(wt)dw+2π1∫−∞+∞w1sin(wt)dw+21={2π1π+21,t>02π1(−π)+21,t<0=u(t)
以上这些经典的傅立叶变换对相当于“积木”,而傅立叶变换的性质则是搭“积木”的规则。
傅立叶变换的性质
1.线性性质1.线性性质1.线性性质
若x1(t)↔ F X1(jw),x2(t)↔ F X2(jw)若x_1(t)\xleftrightarrow{\;F\;}X_1(jw),x_2(t)\xleftrightarrow{\;F\;}X_2(jw)若x1(t)FX1(jw),x2(t)FX2(jw)
则ax1(t)+bx2(t)↔ F aX1(jw)+bX2(jw)则ax_1(t)+bx_2(t)\xleftrightarrow{\;F\;}aX_1(jw)+bX_2(jw)则ax1(t)+bx2(t)FaX1(jw)+bX2(jw)
2.时移性质2.时移性质2.时移性质
若x(t)↔ F X(jw)若x(t)\xleftrightarrow{\;F\;}X(jw)若x(t)FX(jw)
则x(t−t0)↔ F X(jw)e−jwt0则x(t-t_0)\xleftrightarrow{\;F\:}X(jw)e^{-jwt_0}则x(t−t0)FX(jw)e−jwt0
3.频移性质3.频移性质3.频移性质
若x(t)↔ F X(jw)若x(t)\xleftrightarrow{\;F\;}X(jw)若x(t)FX(jw)
则x(t)ejw0t↔ F X(j(w−w0))则x(t)e^{jw_0t}\xleftrightarrow{\;F\:}X(j(w-w_0))则x(t)ejw0tFX(j(w−w0))
4.时域微分性质4.时域微分性质4.时域微分性质
若x(t)↔ F X(jw)若x(t)\xleftrightarrow{\;F\;}X(jw)若x(t)FX(jw)
dx(t)dt↔ F jwX(jw)\frac{dx(t)}{dt}\xleftrightarrow{\;F\;}jwX(jw)dtdx(t)FjwX(jw)
d2x(t)dt2↔ F (jw)2X(jw)\frac{d^2x(t)}{dt^2}\xleftrightarrow{\;F\;}(jw)^2X(jw)dt2d2x(t)F(jw)2X(jw)
以此类推
5.频域微分性质5.频域微分性质5.频域微分性质
若x(t)↔ F X(jw)若x(t)\xleftrightarrow{\;F\;}X(jw)若x(t)FX(jw)
tx(t)↔ F jdX(jw)dwtx(t)\xleftrightarrow{\;F\;}j\frac{dX(jw)}{dw}tx(t)FjdwdX(jw)
6.卷积性质6.卷积性质6.卷积性质
若x(t)↔ F X(jw)若x(t)\xleftrightarrow{\;F\;}X(jw)若x(t)FX(jw)
且h(t)↔ F H(jw)且h(t)\xleftrightarrow{\;F\;}H(jw)且h(t)FH(jw)
那么x(t)∗h(t)↔ F X(jw)H(jw)那么x(t)*h(t)\xleftrightarrow{\;F\;}X(jw)H(jw)那么x(t)∗h(t)FX(jw)H(jw)
所以,y(t)=x(t)∗h(t)即Y(jw)=X(jw)H(jw)所以,y(t)=x(t)*h(t) 即 Y(jw)=X(jw)H(jw)所以,y(t)=x(t)∗h(t)即Y(jw)=X(jw)H(jw)
时域卷积=频域乘积时域卷积=频域乘积时域卷积=频域乘积
7.调制性质7.调制性质7.调制性质
若x1(t)↔ F X1(jw),x2(t)↔ F X2(jw)若x_1(t)\xleftrightarrow{\;F\;}X_1(jw),x_2(t)\xleftrightarrow{\;F\;}X_2(jw)若x1(t)FX1(jw),x2(t)FX2(jw)
则x1(t)x2(t)↔ F 12πX1(jw)∗X2(jw)则x_1(t)x_2(t)\xleftrightarrow{\;F\;}\frac1{2\pi}X_1(jw)*X_2(jw)则x1(t)x2(t)F2π1X1(jw)∗X2(jw)
用微分性质来计算信号
e.g.对于一个LTI系统,有:d2y(t)dt2+4dy(t)dt+3y(t)=dx(t)dt+2x(t)已知输入信号为x(t)=e−tu(t),求输出信号y(t)e.g.对于一个LTI系统,有:\frac{d^2y(t)}{dt^2}+4\frac{dy(t)}{dt}+3y(t)=\frac{dx(t)}{dt}+2x(t)\\已知输入信号为x(t)=e^{-t}u(t),求输出信号y(t)e.g.对于一个LTI系统,有:dt2d2y(t)+4dtdy(t)+3y(t)=dtdx(t)+2x(t)已知输入信号为x(t)=e−tu(t),求输出信号y(t)
根据时域微分性质,可以对应出:
Y(jw)[(jw)2+4jw+3]=X(jw)(jw+2)Y(jw)[(jw)^2+4jw+3]=X(jw)(jw+2)Y(jw)[(jw)2+4jw+3]=X(jw)(jw+2)
且∵X(jw)=11+jw且\because X(jw)=\frac1{1+jw}且∵X(jw)=1+jw1
∴Y(jw)=2+jw(1+jw)2(3+jw)=A(1+jw)2+B1+jw+C3+jw=1/2(1+jw)2+1/41+jw−1/23+jw\therefore Y(jw)=\frac{2+jw}{(1+jw)^2(3+jw)}=\frac{A}{(1+jw)^2}+\frac{B}{1+jw}+\frac{C}{3+jw}=\frac{1/2}{(1+jw)^2}+\frac{1/4}{1+jw}-\frac{1/2}{3+jw}∴Y(jw)=(1+jw)2(3+jw)2+jw=(1+jw)2A+1+jwB+3+jwC=(1+jw)21/2+1+jw1/4−3+jw1/2
*结论 te−atu(t)→ F 1(a+jw)2te^{-at}u(t)\xrightarrow{\;F\;}\frac1{(a+jw)^2}te−atu(t)F(a+jw)21所以可以解得y(t)=(12te−t+14e−t−12e−3t)u(t)y(t)=(\frac12te^{-t}+\frac14e^{-t}-\frac12e^{-3t})u(t)y(t)=(21te−t+41e−t−21e−3t)u(t)
用卷积性质来计算卷积
e.g. e−atu(t)∗e−btu(t)=?e.g.\space \space e^{-at}u(t)*e^{-bt}u(t)=?e.g. e−atu(t)∗e−btu(t)=?
直接卷积做法
y(t)=∫−∞+∞x(τ)h(t−τ)dτ=∫−∞+∞e−aτe−b(t−τ)u(τ)u(t−τ)dτ=e−bt∫−∞+∞e(b−a)τu(τ)u(t−τ)dτ=e−bt∫0te(b−a)τdτ={y(t)=te−btu(t),a=b y(t)=e−at−e−btb−au(t),a≠b \begin{align*} y(t)&=\int_{-\infin}^{+\infin}x(\tau)h(t-\tau)d\tau\\&=\int_{-\infin}^{+\infin}e^{-a\tau}e^{-b(t-\tau)}u(\tau)u(t-\tau)d\tau\\&=e^{-bt}\int_{-\infin}^{+\infin}e^{(b-a)\tau}u(\tau)u(t-\tau)d\tau\\&=e^{-bt}\int_{0}^{t}e^{(b-a)\tau}d\tau\\&=\begin{cases}y(t)=te^{-bt}u(t),a=b\\\ y(t)=\frac{e^{-at}-e^{-bt}}{b-a}u(t),a\neq b\end{cases} \end{align*} y(t)=∫−∞+∞x(τ)h(t−τ)dτ=∫−∞+∞e−aτe−b(t−τ)u(τ)u(t−τ)dτ=e−bt∫−∞+∞e(b−a)τu(τ)u(t−τ)dτ=e−bt∫0te(b−a)τdτ={y(t)=te−btu(t),a=b y(t)=b−ae−at−e−btu(t),a=b变换卷积性质做法
先把两个函数(典型变换对)进行傅立叶变换
x(t)=e−atu(t)↔ F 1a+jw=X(jw)x(t)=e^{-at}u(t)\xleftrightarrow{\;F\;}\frac1{a+jw}=X(jw)x(t)=e−atu(t)Fa+jw1=X(jw)h(t)=e−btu(t)↔ F 1b+jw=H(jw)h(t)=e^{-bt}u(t)\xleftrightarrow{\;F\;}\frac1{b+jw}=H(jw)h(t)=e−btu(t)Fb+jw1=H(jw)
x(t)∗h(t)↔ F X(jw)H(jw)=1(a+jw)(b+jw)x(t)*h(t)\xleftrightarrow{\;F\;}X(jw)H(jw)=\frac{1}{(a+jw)(b+jw)}x(t)∗h(t)FX(jw)H(jw)=(a+jw)(b+jw)1
当a=b时,Y(jw)=1(b+jw)2→ F−1 y(t)=te−btu(t)当a=b时,Y(jw)=\frac1{(b+jw)^2}\xrightarrow{\;F^{-1}\;}y(t)=te^{-bt}u(t)当a=b时,Y(jw)=(b+jw)21F−1y(t)=te−btu(t)当a≠b时,Y(jw)=1(a+jw)(b+jw)=1b−a[1a+jw−1b+jw]→ F−1 y(t)=1b−a(e−at−e−bt)u(t)当a\neq b时,Y(jw)=\frac1{(a+jw)(b+jw)}=\frac1{b-a}[\frac1{a+jw}-\frac1 {b+jw}]\xrightarrow{\;F^{-1}\;}y(t)=\frac1{b-a}(e^{-at}-e^{-bt})u(t)当a=b时,Y(jw)=(a+jw)(b+jw)1=b−a1[a+jw1−b+jw1]F−1y(t)=b−a1(e−at−e−bt)u(t)
与直接卷积的的做法核对,可以看到,是完全符合的。
e.g. x(t)=e−2tu(t) y(t)=1/2(e−t−e−3t)u(t) 求h(t)e.g.\space \space x(t)=e^{-2t}u(t) \space \space \space \space y( t)=1/2(e^{-t}-e^{-3t})u(t)\space \space 求h(t)e.g. x(t)=e−2tu(t) y(t)=1/2(e−t−e−3t)u(t) 求h(t)
X(jw)=12+jw;Y(jw)=1/2(11+jw−13+jw)X(jw)=\frac1{2+jw};Y(jw)=1/2(\frac1{1+jw}-\frac1{3+jw})X(jw)=2+jw1;Y(jw)=1/2(1+jw1−3+jw1)
H(jw)=Y(jw)X(jw)=2+jw(1+jw)(3+jw)=A1+jw−B3+jw=12(11+jw+13+jw)H(jw)=\frac{Y(jw)}{X(jw)}=\frac{2+jw}{(1+jw)(3+jw)}=\frac{A}{1+jw}-\frac{B} {3+jw}=\frac12(\frac1{1+jw}+\frac1{3+jw})H(jw)=X(jw)Y(jw)=(1+jw)(3+jw)2+jw=1+jwA−3+jwB=21(1+jw1+3+jw1)
*当分式的形态是类似⬆️的时候,可以裂项
∴h(t)=12(e−t+e−3t)u(t)\therefore h(t)=\frac12(e^{-t}+e^{-3t})u(t)∴h(t)=21(e−t+e−3t)u(t)
用调制性质来计算信号
e.g.[sin(2t)t]2→ F ?e.g.[\frac{sin(2t)}{t}]^2\xrightarrow {\;F\;}?e.g.[tsin(2t)]2F?
利用调制性质,可以将平方式看成两个相同的时域信号相乘,于是:
若x(t)=sin(2t)t若x(t)=\frac{sin(2t)}{t}若x(t)=tsin(2t)
X(jw)=X(jw)=X(jw)=
两个相同的方波进行卷积可以得到一个三角波
Y(jw)=Y(jw)=Y(jw)=此外,∵∫−∞+∞x(t)dt=X(j0)\because \int^{+\infin}_{-\infin}x(t)dt=X(j0)∵∫−∞+∞x(t)dt=X(j0)
∴∫−∞+∞[sin(2t)t]2dt=2π\therefore \int^{+\infin}_{-\infin}[\frac{sin(2t)}{t}]^2dt=2\pi∴∫−∞+∞[tsin(2t)]2dt=2π





被折叠的 条评论
为什么被折叠?



