「信号」信号分析与处理(四)

傅立叶变换Fourier Transform

傅立叶变换的推出

傅立叶变换是从傅立叶级数推广得到的,回顾一下傅立叶级数:

x(t)=Σ−∞+∞akejω0tx(t)=\Sigma_{-\infin}^{+\infin}a_ke^{j\omega_0t}x(t)=Σ+akejω0t

ak=1T0∫T0x(t)e−jω0tdta_k=\frac1{T_0}\int_{T_0}x(t)e^{-j\omega_0t}dtak=T01T0x(t)ejω0tdt

傅立叶级数针对的函数表达式是周期函数,

更一般地,傅立叶变换针对的函数是非周期函数,

当然我们可以抱着这样一个思想:一个非周期函数,其实也可以看作是周期函数,只不过其周期无限大。

定义(我们暂且先认为这是规定吧。尽管我相信傅立叶不是突然拍脑门想到这些玩意的。)

X(jω)=∫T0x(t)e−jωtdtX(j\omega)=\int_{T_0}x(t)e^{-j\omega t}dtX()=T0x(t)etdt

根据上面的傅立叶级数的式子:

ak=1T0X(jkω0)a_k=\frac1{T_0}X(jk\omega_0)ak=T01X(jkω0)

则有 x(t)=1T0Σ−∞+∞X(jkω0)ejkω0tx(t)=\frac1{T_0}\Sigma^{+\infin}_{-\infin}X(jk\omega_0)e^{jk\omega_0t}x(t)=T01Σ+X(jkω0)ejkω0t,为了向黎曼积分的形式靠拢,将式子左右同乘w0w_0w0,可以得到:

x(t)=1ω0T0Σ−∞+∞X(jkω0)ejkω0tω0x(t)=\frac{1}{\omega_0T_0}\Sigma^{+\infin}_{-\infin}X(jk\omega_0)e^{jk\omega_0t}\omega_0x(t)=ω0T01Σ+X(jkω0)ejkω0tω0

上文我们说了,非周期函数可以看成是周期无限大的周期函数,那么T→∞,就会有ω→0T\rightarrow \infin,就会有\omega\rightarrow 0T,就会有ω0

那么上面的式子可以根据黎曼积分的形式写成:

x(t)=12π∫−∞+∞X(jω)ejwtdwx(t)=\frac1{2\pi}\int_{-\infin}^{+\infin}X(j\omega)e^{jwt}dwx(t)=2π1+X()ejwtdw

注:这里已经不需要写成kw的形式了,因为w是连续的变化的。

傅立叶变换对

因而整理出傅立叶变换对

x(t)=12π∫−∞+∞X(jω)ejwtdwx(t)=\frac1{2\pi}\int_{-\infin}^{+\infin}X(j\omega)e^{jwt}dwx(t)=2π1+X()ejwtdw

X(jω)=∫T0x(t)e−jωtdtX(j\omega)=\int_{T_0}x(t)e^{-j\omega t}dtX()=T0x(t)etdt

我们可以把这个对和级数对做一个比较

x(t)=Σ−∞+∞akejω0tx(t)=\Sigma_{-\infin}^{+\infin}a_ke^{j\omega_0t}x(t)=Σ+akejω0t

ak=1T0∫T0x(t)e−jω0tdta_k=\frac1{T_0}\int_{T_0}x(t)e^{-j\omega_0t}dtak=T01T0x(t)ejω0tdt

其实可以感觉出X(jw)X(jw)X(jw)aka_kak是怎么一回事。在规定T→∞T\rightarrow \infinT的情况下,aka_kak变成一个无穷小量,这是没有意义且显然和现实世界不符合的(一个非周期信号的频谱显然不可能处处等于0,他总是在某些地方有些值)。因此,如果将这个式子变化一下:以TakTa_kTak为单位,这就是一个可以算出的量了,而这也就是X(jw)X(jw)X(jw)的由来。

综上,我们就建立了非周期函数时域频域的转换公式

时域:x(t)→X(jω):频域时域:x(t)\rightarrow X(j\omega):频域时域:x(t)X():频域

典型信号的傅立叶变换

1.e−atu(t)→  F  1a+jω1.e^{-at}u(t)\xrightarrow{\;F\;} \frac1{a+j\omega}1.eatu(t)Fa+1

P.f

X(jw)=∫−∞+∞e−atu(t)e−jwtdt=∫0+∞e(−a−jw)tdt=−1a+jwe(−a−jw)t∣0∞=1a+jwX(jw)=\int_{-\infin}^{+\infin}e^{-at}u(t)e^{-jwt}dt\\=\int_0^{+\infin}e^{(-a-jw)t}dt\\=-\frac1{a+jw}e^{(-a-jw)t}|^\infin_0\\=\frac1{a+jw}X(jw)=+eatu(t)ejwtdt=0+e(ajw)tdt=a+jw1e(ajw)t0=a+jw1

2.δ(t)→  F  12.\delta(t)\xrightarrow{\;F\;}12.δ(t)F1

P.f

X(jw)=∫−∞+∞δ(t)e−jwtdt=e−jwt∣t=0=1X(jw)=\int_{-\infin}^{+\infin}\delta(t)e^{-jwt}dt\\=e^{-jwt}|_{t=0}=1X(jw)=+δ(t)ejwtdt=ejwtt=0=1

3.1→  F  2πδ(ω)3.1\xrightarrow {\;F\;}2\pi\delta(\omega)3.1F2πδ(ω)

p.f(简单做法,右推左)

x(t)=12π∫−∞+∞2πδ(t)ejwtdt=ejwt∣当t=0=1x(t)=\frac1{2\pi}\int^{+\infin}_{-\infin}2\pi\delta(t)e^{jwt}dt\\=e^{jwt}|_{当t=0}=1x(t)=2π1+2πδ(t)ejwtdt=ejwtt=0=1

p.f(复杂做法,左推右)

X(jw)=∫−∞+∞e−jwtdt=−1jwe−jwt∣−∞+∞=limN→∞(−1jwe−jwt∣−NN)=limN→∞1jw(ejwN−e−jwN)=limN→∞2sin(wN)w=2πδ(w)X(jw)=\int_{-\infin}^{+\infin}e^{-jwt}dt\\=-\frac1{jw}e^{-jwt}|^{+\infin}_{-\infin}\\=lim_{N\rightarrow\infin}(-\frac1{jw}e^{-jwt}|^N_{-N})\\=lim_{N\rightarrow\infin}\frac1{jw}(e^{jwN}-e^{-jwN})\\=lim_{N\rightarrow\infin}\frac{2sin(wN)}{w}=2\pi\delta(w)X(jw)=+ejwtdt=jw1ejwt+=limN(jw1ejwtNN)=limNjw1(ejwNejwN)=limNw2sin(wN)=2πδ(w)

这里运用了一个小结论:

limw→∞sin(wt)t=πδ(t)lim_{w\rightarrow\infin}\frac{sin(wt)}{t}=\pi\delta(t)limwtsin(wt)=πδ(t)

4.方波→  F  EτSa(τω2)4.方波\xrightarrow{\;F\;}E\tau Sa(\frac{\tau \omega}2)4.方波FEτSa(2τω)

在这里插入图片描述

p.f

X(jw)=∫−τ2τ2Ee−jwtdt=Ejwe−jwt∣−τ2τ2=Ejw(ejwτ2−e−jwτ2)=Ejw×2jsin(wτ/2)=Eτsinc(τω2)X(jw)=\int_{-\frac{\tau}2}^{\frac{\tau}2}Ee^{-jwt}dt\\=\frac E{jw}e^{-jwt}|_{-\frac{\tau}2}^{\frac{\tau}2}\\=\frac E{jw}(e^{\frac{jw\tau}2}-e^{-\frac{jw\tau}2})\\=\frac E{jw}\times2jsin(w\tau/2)\\=E\tau sinc(\frac{\tau \omega}2)X(jw)=2τ2τEejwtdt=jwEejwt2τ2τ=jwE(e2jwτe2jwτ)=jwE×2jsin(wτ/2)=Eτsinc(2τω)

5.sin(ωct)πt→  F  方波5.\frac{sin(\omega_ct)}{\pi t}\xrightarrow {\;F\;}方波5.πtsin(ωct)F方波

在这里插入图片描述

X(jω)=∫−∞+∞sin⁡(ωct)πte−jωtdt=∫−∞+∞sin⁡(ωct)πt(cos⁡(ωt)−jsin⁡(ωt))dt=∫−∞+∞sin⁡(ωct)πtcos⁡(ωt)dt−∫−∞+∞sin⁡(ωct)πtjsin⁡(ωt)dt=∫−∞+∞sin⁡(ωct)πtcos⁡(ωt)dt=12∫−∞+∞sin⁡((ωc+ω)t)πtdt−12∫−∞+∞sin⁡((ωc−ω)t)πtdt \begin{align*} X(j\omega) &= \int_{-\infty}^{+\infty} \frac{\sin(\omega_c t)}{\pi t} e^{-j\omega t} dt \\ &= \int_{-\infty}^{+\infty} \frac{\sin(\omega_c t)}{\pi t} (\cos(\omega t) - j\sin(\omega t)) dt \\ &= \int_{-\infty}^{+\infty} \frac{\sin(\omega_c t)}{\pi t} \cos(\omega t) dt - \int_{-\infty}^{+\infty} \frac{\sin(\omega_c t)}{\pi t} j\sin(\omega t) dt \\ &= \int_{-\infty}^{+\infty} \frac{\sin(\omega_c t)}{\pi t} \cos(\omega t) dt \\ &= \frac{1}{2} \int_{-\infty}^{+\infty} \frac{\sin((\omega_c + \omega)t)}{\pi t} dt - \frac{1}{2} \int_{-\infty}^{+\infty} \frac{\sin((\omega_c - \omega)t)}{\pi t} dt \end{align*} X()=+πtsin(ωct)etdt=+πtsin(ωct)(cos(ωt)jsin(ωt))dt=+πtsin(ωct)cos(ωt)dt+πtsin(ωct)jsin(ωt)dt=+πtsin(ωct)cos(ωt)dt=21+πtsin((ωc+ω)t)dt21+πtsin((ωcω)t)dt
*一个结论:

符号函数sig(t)=∫−∞+∞sin(wt)πtdt={1,w>0−1,w<0符号函数sig(t)=\int_{-\infin}^{+\infin}\frac {sin(wt)}{\pi t}dt=\begin{cases}1,& w>0\\-1,&w<0\end{cases}符号函数sig(t)=+πtsin(wt)dt={1,1,w>0w<0

那么可得sin(ωct)πt→  F  {1,−wc<w<wc0,其他\frac{sin(\omega_ct)}{\pi t}\xrightarrow {\;F\;}\begin{cases}1,-w_c<w<w_c\\0,其他\end{cases}πtsin(ωct)F{1,wc<w<wc0,其他

6.cos(ω0t)→  F  π[δ(ω+ω0)+δ(ω−ω0)]6.cos(\omega_0t)\xrightarrow {\;F\;}\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]6.cos(ω0t)Fπ[δ(ω+ω0)+δ(ωω0)]

p.f
X(jω)=∫−∞+∞cos⁡(ω0t)e−jωt dt=12∫−∞+∞(ejω0t+e−jω0t)e−jωt dt=12∫−∞+∞ej(ω0−ω)t dt+12∫−∞+∞e−j(ω0+ω)t dt=π[δ(ω+ω0)+δ(ω−ω0)] \begin{align*} X(j\omega) &= \int_{-\infty}^{+\infty} \cos(\omega_0 t) e^{-j\omega t} \, dt \\ &= \frac{1}{2} \int_{-\infty}^{+\infty} (e^{j\omega_0 t} + e^{-j\omega_0 t}) e^{-j\omega t} \, dt \\ &= \frac{1}{2} \int_{-\infty}^{+\infty} e^{j(\omega_0 - \omega)t} \, dt + \frac{1}{2} \int_{-\infty}^{+\infty} e^{-j(\omega_0 + \omega)t} \, dt \\ &= \pi [\delta(\omega + \omega_0) + \delta(\omega - \omega_0)] \end{align*} X()=+cos(ω0t)etdt=21+(ejω0t+ejω0t)etdt=21+ej(ω0ω)tdt+21+ej(ω0+ω)tdt=π[δ(ω+ω0)+δ(ωω0)]

7.sin(ω0t)→  F  πj[δ(ω−ω0)−δ(ω+ω0)]7.sin(\omega_0t)\xrightarrow{\;F\;}\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]7.sin(ω0t)Fjπ[δ(ωω0)δ(ω+ω0)]

p.f
X(jw)=∫−∞+∞sin(w0t)e−jwtdt=∫−∞+∞j2(e−jw0t−ejw0t)e−jwtdt=j2∫−∞+∞[e−j(w0+w)t−ej(w0−w)t]dt=j2[2πδ(w0+w)−2πδ(w−w0)]=πj[δ(ω−ω0)−δ(ω+ω0)] \begin{align*} X(jw)&=\int^{+\infin}_{-\infin}sin(w_0t)e^{-jwt}dt\\&=\int^{+\infin}_{-\infin}\frac j2(e^{-jw_0t}-e^{jw_0t})e^{-jwt}dt\\&=\frac j2\int^{+\infin}_{-\infin}[e^{-j(w_0+w)t}-e^{j(w_0-w)t}]dt\\&=\frac j2[2\pi\delta(w_0+w)-2\pi\delta(w-w_0)]\\&=\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)] \end{align*} X(jw)=+sin(w0t)ejwtdt=+2j(ejw0tejw0t)ejwtdt=2j+[ej(w0+w)tej(w0w)t]dt=2j[2πδ(w0+w)2πδ(ww0)]=jπ[δ(ωω0)δ(ω+ω0)]

8.u(t)→  F  1jw+πδ(w)8.u(t)\xrightarrow{\;F\;}\frac1{jw}+\pi\delta(w)8.u(t)Fjw1+πδ(w)

p.f
x(t)=12π∫−∞+∞[1jw+πδ(ω)]ejwtdw=12π∫−∞+∞1jwejwtdw+12=12π∫−∞+∞1jwcos(wt)dw+12π∫−∞+∞1wsin(wt)dw+12={12ππ+12,t>012π(−π)+12,t<0=u(t) \begin{align*} x(t)&=\frac1{2\pi}\int_{-\infin}^{+\infin}[\frac1{jw}+\pi\delta(\omega)]e^{jwt}dw\\ &=\frac1 {2\pi}\int_{-\infin}^{+\infin}\frac1{jw}e^{jwt}dw+\frac12\\&=\frac1 {2\pi}\int_{-\infin}^{+\infin}\frac1{jw}cos(wt)dw+\frac1 {2\pi}\int_{-\infin}^{+\infin}\frac1wsin(wt)dw+\frac12\\&=\begin{cases}\frac1{2\pi}\pi+\frac12,t>0\\\frac1{2\pi}(-\pi)+\frac12,t<0\end{cases}\\&\\&=u(t) \end{align*} x(t)=2π1+[jw1+πδ(ω)]ejwtdw=2π1+jw1ejwtdw+21=2π1+jw1cos(wt)dw+2π1+w1sin(wt)dw+21={2π1π+21,t>02π1(π)+21,t<0=u(t)

以上这些经典的傅立叶变换对相当于“积木”,而傅立叶变换的性质则是搭“积木”的规则。

傅立叶变换的性质

1.线性性质1.线性性质1.线性性质

若x1(t)↔  F  X1(jw),x2(t)↔  F  X2(jw)若x_1(t)\xleftrightarrow{\;F\;}X_1(jw),x_2(t)\xleftrightarrow{\;F\;}X_2(jw)x1(t)FX1(jw),x2(t)FX2(jw)

则ax1(t)+bx2(t)↔  F  aX1(jw)+bX2(jw)则ax_1(t)+bx_2(t)\xleftrightarrow{\;F\;}aX_1(jw)+bX_2(jw)ax1(t)+bx2(t)FaX1(jw)+bX2(jw)

2.时移性质2.时移性质2.时移性质

若x(t)↔  F  X(jw)若x(t)\xleftrightarrow{\;F\;}X(jw)x(t)FX(jw)

则x(t−t0)↔  F X(jw)e−jwt0则x(t-t_0)\xleftrightarrow{\;F\:}X(jw)e^{-jwt_0}x(tt0)FX(jw)ejwt0

3.频移性质3.频移性质3.频移性质

若x(t)↔  F  X(jw)若x(t)\xleftrightarrow{\;F\;}X(jw)x(t)FX(jw)

则x(t)ejw0t↔  F X(j(w−w0))则x(t)e^{jw_0t}\xleftrightarrow{\;F\:}X(j(w-w_0))x(t)ejw0tFX(j(ww0))

4.时域微分性质4.时域微分性质4.时域微分性质

若x(t)↔  F  X(jw)若x(t)\xleftrightarrow{\;F\;}X(jw)x(t)FX(jw)

dx(t)dt↔  F  jwX(jw)\frac{dx(t)}{dt}\xleftrightarrow{\;F\;}jwX(jw)dtdx(t)FjwX(jw)

d2x(t)dt2↔  F  (jw)2X(jw)\frac{d^2x(t)}{dt^2}\xleftrightarrow{\;F\;}(jw)^2X(jw)dt2d2x(t)F(jw)2X(jw)

以此类推

5.频域微分性质5.频域微分性质5.频域微分性质

若x(t)↔  F  X(jw)若x(t)\xleftrightarrow{\;F\;}X(jw)x(t)FX(jw)

tx(t)↔  F  jdX(jw)dwtx(t)\xleftrightarrow{\;F\;}j\frac{dX(jw)}{dw}tx(t)FjdwdX(jw)

6.卷积性质6.卷积性质6.卷积性质

若x(t)↔  F  X(jw)若x(t)\xleftrightarrow{\;F\;}X(jw)x(t)FX(jw)

且h(t)↔  F  H(jw)且h(t)\xleftrightarrow{\;F\;}H(jw)h(t)FH(jw)

那么x(t)∗h(t)↔  F  X(jw)H(jw)那么x(t)*h(t)\xleftrightarrow{\;F\;}X(jw)H(jw)那么x(t)h(t)FX(jw)H(jw)

所以,y(t)=x(t)∗h(t)即Y(jw)=X(jw)H(jw)所以,y(t)=x(t)*h(t) 即 Y(jw)=X(jw)H(jw)所以,y(t)=x(t)h(t)Y(jw)=X(jw)H(jw)

时域卷积=频域乘积时域卷积=频域乘积时域卷积=频域乘积

7.调制性质7.调制性质7.调制性质

若x1(t)↔  F  X1(jw),x2(t)↔  F  X2(jw)若x_1(t)\xleftrightarrow{\;F\;}X_1(jw),x_2(t)\xleftrightarrow{\;F\;}X_2(jw)x1(t)FX1(jw),x2(t)FX2(jw)

则x1(t)x2(t)↔  F  12πX1(jw)∗X2(jw)则x_1(t)x_2(t)\xleftrightarrow{\;F\;}\frac1{2\pi}X_1(jw)*X_2(jw)x1(t)x2(t)F2π1X1(jw)X2(jw)

用微分性质来计算信号

e.g.对于一个LTI系统,有:d2y(t)dt2+4dy(t)dt+3y(t)=dx(t)dt+2x(t)已知输入信号为x(t)=e−tu(t),求输出信号y(t)e.g.对于一个LTI系统,有:\frac{d^2y(t)}{dt^2}+4\frac{dy(t)}{dt}+3y(t)=\frac{dx(t)}{dt}+2x(t)\\已知输入信号为x(t)=e^{-t}u(t),求输出信号y(t)e.g.对于一个LTI系统,有:dt2d2y(t)+4dtdy(t)+3y(t)=dtdx(t)+2x(t)已知输入信号为x(t)=etu(t),求输出信号y(t)

根据时域微分性质,可以对应出:

Y(jw)[(jw)2+4jw+3]=X(jw)(jw+2)Y(jw)[(jw)^2+4jw+3]=X(jw)(jw+2)Y(jw)[(jw)2+4jw+3]=X(jw)(jw+2)

且∵X(jw)=11+jw且\because X(jw)=\frac1{1+jw}X(jw)=1+jw1

∴Y(jw)=2+jw(1+jw)2(3+jw)=A(1+jw)2+B1+jw+C3+jw=1/2(1+jw)2+1/41+jw−1/23+jw\therefore Y(jw)=\frac{2+jw}{(1+jw)^2(3+jw)}=\frac{A}{(1+jw)^2}+\frac{B}{1+jw}+\frac{C}{3+jw}=\frac{1/2}{(1+jw)^2}+\frac{1/4}{1+jw}-\frac{1/2}{3+jw}Y(jw)=(1+jw)2(3+jw)2+jw=(1+jw)2A+1+jwB+3+jwC=(1+jw)21/2+1+jw1/43+jw1/2

*结论 te−atu(t)→  F  1(a+jw)2te^{-at}u(t)\xrightarrow{\;F\;}\frac1{(a+jw)^2}teatu(t)F(a+jw)21

所以可以解得y(t)=(12te−t+14e−t−12e−3t)u(t)y(t)=(\frac12te^{-t}+\frac14e^{-t}-\frac12e^{-3t})u(t)y(t)=(21tet+41et21e3t)u(t)

用卷积性质来计算卷积

e.g.  e−atu(t)∗e−btu(t)=?e.g.\space \space e^{-at}u(t)*e^{-bt}u(t)=?e.g.  eatu(t)ebtu(t)=?

直接卷积做法
y(t)=∫−∞+∞x(τ)h(t−τ)dτ=∫−∞+∞e−aτe−b(t−τ)u(τ)u(t−τ)dτ=e−bt∫−∞+∞e(b−a)τu(τ)u(t−τ)dτ=e−bt∫0te(b−a)τdτ={y(t)=te−btu(t),a=b y(t)=e−at−e−btb−au(t),a≠b \begin{align*} y(t)&=\int_{-\infin}^{+\infin}x(\tau)h(t-\tau)d\tau\\&=\int_{-\infin}^{+\infin}e^{-a\tau}e^{-b(t-\tau)}u(\tau)u(t-\tau)d\tau\\&=e^{-bt}\int_{-\infin}^{+\infin}e^{(b-a)\tau}u(\tau)u(t-\tau)d\tau\\&=e^{-bt}\int_{0}^{t}e^{(b-a)\tau}d\tau\\&=\begin{cases}y(t)=te^{-bt}u(t),a=b\\\ y(t)=\frac{e^{-at}-e^{-bt}}{b-a}u(t),a\neq b\end{cases} \end{align*} y(t)=+x(τ)h(tτ)dτ=+eaτeb(tτ)u(τ)u(tτ)dτ=ebt+e(ba)τu(τ)u(tτ)dτ=ebt0te(ba)τdτ={y(t)=tebtu(t),a=b y(t)=baeatebtu(t)a=b

变换卷积性质做法

先把两个函数(典型变换对)进行傅立叶变换

x(t)=e−atu(t)↔  F  1a+jw=X(jw)x(t)=e^{-at}u(t)\xleftrightarrow{\;F\;}\frac1{a+jw}=X(jw)x(t)=eatu(t)Fa+jw1=X(jw)

h(t)=e−btu(t)↔  F  1b+jw=H(jw)h(t)=e^{-bt}u(t)\xleftrightarrow{\;F\;}\frac1{b+jw}=H(jw)h(t)=ebtu(t)Fb+jw1=H(jw)

x(t)∗h(t)↔  F  X(jw)H(jw)=1(a+jw)(b+jw)x(t)*h(t)\xleftrightarrow{\;F\;}X(jw)H(jw)=\frac{1}{(a+jw)(b+jw)}x(t)h(t)FX(jw)H(jw)=(a+jw)(b+jw)1

当a=b时,Y(jw)=1(b+jw)2→  F−1  y(t)=te−btu(t)当a=b时,Y(jw)=\frac1{(b+jw)^2}\xrightarrow{\;F^{-1}\;}y(t)=te^{-bt}u(t)a=b,Y(jw)=(b+jw)21F1y(t)=tebtu(t)

当a≠b时,Y(jw)=1(a+jw)(b+jw)=1b−a[1a+jw−1b+jw]→  F−1  y(t)=1b−a(e−at−e−bt)u(t)当a\neq b时,Y(jw)=\frac1{(a+jw)(b+jw)}=\frac1{b-a}[\frac1{a+jw}-\frac1 {b+jw}]\xrightarrow{\;F^{-1}\;}y(t)=\frac1{b-a}(e^{-at}-e^{-bt})u(t)a=b,Y(jw)=(a+jw)(b+jw)1=ba1[a+jw1b+jw1]F1y(t)=ba1(eatebt)u(t)

与直接卷积的的做法核对,可以看到,是完全符合的。

e.g.  x(t)=e−2tu(t)    y(t)=1/2(e−t−e−3t)u(t)  求h(t)e.g.\space \space x(t)=e^{-2t}u(t) \space \space \space \space y( t)=1/2(e^{-t}-e^{-3t})u(t)\space \space 求h(t)e.g.  x(t)=e2tu(t)    y(t)=1/2(ete3t)u(t)  h(t)

X(jw)=12+jw;Y(jw)=1/2(11+jw−13+jw)X(jw)=\frac1{2+jw};Y(jw)=1/2(\frac1{1+jw}-\frac1{3+jw})X(jw)=2+jw1;Y(jw)=1/2(1+jw13+jw1)

H(jw)=Y(jw)X(jw)=2+jw(1+jw)(3+jw)=A1+jw−B3+jw=12(11+jw+13+jw)H(jw)=\frac{Y(jw)}{X(jw)}=\frac{2+jw}{(1+jw)(3+jw)}=\frac{A}{1+jw}-\frac{B} {3+jw}=\frac12(\frac1{1+jw}+\frac1{3+jw})H(jw)=X(jw)Y(jw)=(1+jw)(3+jw)2+jw=1+jwA3+jwB=21(1+jw1+3+jw1)

*当分式的形态是类似⬆️的时候,可以裂项

∴h(t)=12(e−t+e−3t)u(t)\therefore h(t)=\frac12(e^{-t}+e^{-3t})u(t)h(t)=21(et+e3t)u(t)

用调制性质来计算信号

e.g.[sin(2t)t]2→  F  ?e.g.[\frac{sin(2t)}{t}]^2\xrightarrow {\;F\;}?e.g.[tsin(2t)]2F?

利用调制性质,可以将平方式看成两个相同的时域信号相乘,于是:

若x(t)=sin(2t)t若x(t)=\frac{sin(2t)}{t}x(t)=tsin(2t)

X(jw)=X(jw)=X(jw)=在这里插入图片描述

两个相同的方波进行卷积可以得到一个三角波

Y(jw)=Y(jw)=Y(jw)=在这里插入图片描述

此外,∵∫−∞+∞x(t)dt=X(j0)\because \int^{+\infin}_{-\infin}x(t)dt=X(j0)+x(t)dt=X(j0)

∴∫−∞+∞[sin(2t)t]2dt=2π\therefore \int^{+\infin}_{-\infin}[\frac{sin(2t)}{t}]^2dt=2\pi+[tsin(2t)]2dt=2π

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值