机器学习指标(Precision、Recall、mAP、F1 Score等)

以下文章摘录自:

《机器学习观止——核心原理与实践》

京东: https://item.jd.com/13166960.html

当当:http://product.dangdang.com/29218274.html

(由于博客系统问题,部分公式、图片和格式有可能存在显示问题,请参阅原书了解详情)

————————————————

版权声明:本文为CSDN博主「林学森」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/xuesen_lin/

 

 

1.1        Precision、recall和mAP (mean  Average  Precision)

计算机领域有很多评估识别结果精度的方式,mAP就是其中应用非常广泛的一种。它的计算过程并不复杂,引用Wikipedia上的描述:

“Mean average precision for a set of queries is the mean of the average precision scores for each query.”

对应的公式是:

其中Q是指查询的次数。

Wiki上的释义虽然是针对信息检索提出来的,但同样可以被机器学习领域用于评估预测精度。在mAP公式中,涉及到了AveP(q)的计算过程。而如果要理解后者,首先得先明白3个指标:Accuracy、Recall和Precision。

 

不论是针对哪种场景,二分类模型的检测结果都有如下4种可能性:

l  True Positive (TP)

预测值为1,实际值也为1,检测正确

l  False Positive (FP)

预测值为1,但实际值为0,检测错误

l  True Negative (TN)

预测值为0,实际值也为0,检测正确

l  False Negative (FN)

预测值为0,实际值为1,检测错误

 

Accuracy和Precision都很好理解,它们指的是:

Accuracy = (TP + TN) / (TP + FP + TN + FN)

Precision = TP / (TP + FP)

 

但是仅有这两个指标是不够的。举个实际的例子大家就很好理解了:我们知道“导弹攻击信号”有可能是真实的,也可能是模拟出来的。现在假设100次中真正的导弹攻击事件是3次,同时某导弹攻击防御器成功检测出了其中的两次。那么可以得出:

TP=2

TN=97

FP=0

FN=1

 

所以Accuracy = 99%, 而Precision = 2/2 = 100%。可见光从这两个值来看,这个导弹防御器的表现似乎已经非常不错了。但事实真的如此吗?毋庸置疑导弹攻击是非常致命的,所以即便是只有一次的失误,也是让人无法接受的。

或者我们再换一种思路——如果程序员为了偷懒,写了一个类似下面的导弹攻击检测器:

boolean isRealMissile()

{

  return false;//管它是真是假,一律当假的处理。提前下班。。。

}

那么针对上面这一模型的评估结果如何呢?

此时:

TP = 0

TN = 97

FP = 0

FN = 3

 

因而Accuracy = 97%。也就是说即便什么都不做,系统也可以达到很高的准确率,这显然不是我们希望看到的结果。

这也是引入Recall的原因之一。它的定义如下所示:

Recall = TP / (TP+FN)

而上述两种情况因为Recall值分别为66.6%及0,终于得到了相对公正的评价。

 

理解了Precision和Recall后,接下来我们就可以进一步分析Average Precision了。对于一个多标签图像分类系统来说,每一个预测分类(例如小猫)都可以得到它们的confidence score,以及对应的Ground Truth Label。范例如下:

Index

Confidence Score

Ground Truth Label

5

  • 3
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
### 回答1: precisionrecallf1-scoresupport机器学习中常用的评估指标。 其中,precision(精确率)指的是模型预测为正例的样本中,真正为正例的比例;recall(召回率)指的是真正为正例的样本中,被模型预测为正例的比例;f1-scoreF1值)是precisionrecall的调和平均数,用于综合评估模型的性能;support(支持数)指的是每个类别在数据集中出现的次数。 在分类问题中,precisionrecallf1-score都是用来评估模型的分类准确性的指标,而support则是用来衡量每个类别的样本数量。 ### 回答2: precisionrecallf1-scoresupport机器学习中对分类模型性能评价的重要指标Precision(精确率)是指预测为正样本的样本中有多少是真正的正样本。它的计算公式为:Precision = 真正的正样本数 / 预测为正样本的样本数。Precision越高,说明模型预测的正样本越准确。 Recall(召回率)是指所有真正的正样本中,模型预测出了多少个正样本。它的计算公式为:Recall = 真正的正样本数 / 所有真正的正样本数。Recall越高,说明模型能够识别到更多的正样本。 F1-scoreF1指标)是精确率和召回率的调和平均值。它的计算公式为:F1-score = 2 * Precision * Recall / (Precision + Recall)。F1-score综合考虑了模型的精确率和召回率,是一个更全面的评价模型分类性能的指标Support是指每个类别在测试集中出现的频率(数量)。这个指标主要是为了在多分类任务中,评价每个类别的影响力大小。 在实际应用中,需要综合考虑PrecisionRecallF1-score来评价一个分类模型的准确性和召回能力。比如,在医学领域中,如果一个肿瘤预测模型的Recall很高,说明模型能够预测出更多的真实患者,但如果Precision很低,就会出现很多误诊的情况。此时,我们可以将F1-score作为综合评价指标,考虑模型的精确率和召回率的平衡。 ### 回答3: 这四个指标是评估分类模型性能的重要指标,通常会和混淆矩阵一起使用来评价模型的表现。 Precision(精确率):是指模型在预测为正例中有多少是真正的正例,也可以说是真正例占全部预测为正例的比例。该指标越高,表示模型判断为正例的数据越有可能是真正的正例。 Recall(召回率):是指模型在所有真正实际为正例的样本中,能够被模型正确预测为正例的比例。该指标越高,表示模型能够更好地找到真正的正例。 F1-score:是指精确率和召回率的综合指标,是两者的调和平均数。该指标可以更全面地反映模型的准确率和遗漏率,适用于数据不平衡的情况。 Support(支持度):是指数据集中属于某个类别的样本数量,与其他指标不同的是,该指标没有考虑模型的预测结果,只是对数据集的分布做出了描述。 在实际应用中,选择哪个指标作为评价标准取决于具体任务的需求以及数据分布的特点。例如,在银行反欺诈领域,由于正例较少,需要更关注召回率以避免错过异常交易,而将精确率作为优化目标可能会导致将正常交易误判。因此,在不同场景下需要合理选择评价指标,并综合考虑多个指标综合评估模型的性能。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值