# Max Sum

Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.

Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).

Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.

Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5

Sample Output
Case 1: 14 1 4 Case 2: 7 1 6

Author
Ignatius.L

#include<bits/stdc++.h>
#define ll long long
using namespace std;

const int mod=1e9+7;
const int N=1000+5;

char s[N];
ll sum[N][N];

int main(){
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int sum,mm,p;
int T;
cin>>T;
int z=1;
while(sum=0,p=1,mm=1<<31,T--){
if(z!=1)puts("");
int n;
cin>>n;
int pl,pr;
for(int i=1;i<=n;i++){
int t;
scanf("%d",&t);
sum+=t;
if(sum>mm){
mm=sum;
pl=p;
pr=i;
}
if(sum<0){
sum=0;
p=i+1;
}
}
printf("Case %d:\n%d %d %d\n",z++,mm,pl,pr);
}
return 0;
}