自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(26)
  • 收藏
  • 关注

原创 SAM分割一切系列相关论文梳理

为了在保留优势的同时克服当前SAM方法的局限性,我们提出了用于通用细胞核分割的域自适应自提示SAM框架(UN - SAM),通过提供一种在不同领域都具有卓越性能的全自动解决方案。此外,为了在各种细胞核图像中发挥SAM的能力,我们设计了一个域自适应调谐编码器(DT - Encoder),将视觉特征与领域通用和领域特定知识无缝融合,并进一步设计了一个域查询增强解码器(DQ - Decoder),通过利用可学习的域查询在不同的细胞核领域进行分割解码。可以看出大部分都是结合SAM与其他模型实现的工具,例如。

2025-05-15 13:28:10 1055

原创 SAM微调fine-tune/PEFT系列论文整理

分割一切模型(SAM)彻底改变了计算机视觉领域。依靠对SAM的微调将解决大量基础计算机视觉任务。我们正在设计一个基于SAM的用于训练微调模型的类别感知单阶段工具。你需要提供任务所需的数据集以及支持的任务名称,此工具将帮助你获得针对任务的微调模型。你也可以设计自己的扩展SAM模型,FA将为你提供训练、测试和部署流程。

2025-05-15 12:24:49 1059

原创 从SAM看交互式分割与可提示分割的区别与联系:Interactive Segmentation & Promptable Segmentation

维度提示分割(Promptable Segmentation)交互式分割(Interactive Segmentation)核心目标单次提示生成有效掩码,支持零样本泛化(任意任务/数据分布)多轮交互修正掩码,追求高精度(依赖用户反馈)提示次数单次为主(支持多提示组合,但无需迭代)多次(依赖用户逐步输入前景/背景点、边界调整等)歧义处理输出多个掩码,自动排序(如3个掩码+IoU评分)假设用户通过交互消除歧义,输出单个掩码模型能力通用分割基础模型,可组合到更大系统(如文本+检测框→实例分割)

2025-05-13 13:53:56 772

原创 SAM论文学习

本文的一大核心是prompt,支持多种prompt作为输入,那么什么是prompt?prompt指定图像中要分割的内容,可以包含待识别物体的空间或文本信息等。包含11M图片、1.1Bmask的数据集SA-1B是怎么来的?如上分为三个阶段(1) 模型辅助人工标注阶段,(2) 半自动阶段,结合自动预测掩码和模型辅助标注,(3) 全自动阶段,在此阶段我们的模型无需标注人员输入即可生成掩码。由于在实际应用中这种构建大规模数据方式有很好的参考意义,所以这里重点介绍一下。

2025-05-12 20:01:06 949

原创 我的创作纪念日

提示:你过去写得最好的一段代码是什么?提示:当前创作和你的工作、学习是什么样的关系。提示:可以和大家分享最初成为创作者的初心。提示:在创作的过程中都有哪些收获。提示:职业规划、创作规划等​​。

2025-05-12 16:01:38 273

原创 NeurIPS各年份论文列表,当前至2024

如何查找NeurIPS历年收录的论文?

2025-05-08 17:19:27 348

原创 NeurIPS 2024 | 工业质检缺陷检测相关论文梳理

上下文分割要求模型在给定少量支持样本(如 1 个或多个带有标注的支持图像)的情况下,能够直接对查询图像进行语义分割,无需额外的训练或微调。其核心是模型具备 “上下文学习能力”,即通过输入的示例(上下文)快速理解目标类别,并将其泛化到新图像中。上下文分割是少样本语义分割的进化形态。传统少样本分割(如 1-shot、5-shot 分割)关注在少量标注样本下训练模型,而上下文分割进一步要求模型在推理阶段仅通过输入的上下文示例(即支持样本)完成分割,无需额外训练步骤。

2025-05-08 17:10:41 755

原创 工业质检/缺陷检测领域最新顶会期刊论文收集整理 | AAAI 2025【持续更新中】

第三十九届美国人工智能协会(AAAI)人工智能大会于2025年2月25日至3月4日在宾夕法尼亚州费城举行。程序委员会主席为Julie Shah(美国麻省理工学院)和Zico Kolter(美国卡内基梅隆大学)。本次会议的范围涵盖机器学习、自然语言处理、计算机视觉、数据挖掘、多智能体系统、知识表示、人机协作人工智能、搜索、规划、推理、机器人与感知,以及伦理道德。除了专注于上述任一领域的基础研究工作外,AAAI - 25还鼓励开展跨人工智能技术领域的研究(例如,机器学习与计算机视觉;计算机视觉与自然语言处理。

2025-05-06 19:53:34 1299

原创 数字人驱动/动画方向最新顶会期刊论文收集整理 | AAAI 2025

利用这些强大的先验,我们开发了 DEEPTalk,这是一个会说话的头部生成器,它可以非自回归地预测码本索引以创建动态的面部运动,并结合了一种新的情绪一致性损失。广泛的实验表明,我们的方法获得了最先进的结果,保留了源身份,保持了细粒度的面部细节,并以非常高的准确性捕捉了细微的面部表情。此策略可增强 GAN 训练的稳定性,并确保生成的全身手势的表现力。例如,由于音频信号相对较弱,仅由音频驱动的方法有时会不稳定,而仅由面部关键点驱动的方法虽然在驾驶中更稳定,但由于对关键点信息的过度控制,可能会导致不自然的结果。

2025-05-06 19:52:05 1022

原创 工业质检领域相关近期顶会论文汇总CVPR2025

参考:

2025-04-30 16:05:29 965

原创 【零样本异常检测CVPR2025】AA-CLIP:Enhancing Zero-Shot Anomaly Detection via Anomaly-Aware CLIP 论文解读

文章的核心在于原始的CLIP由于关注通用能力,缺乏对异常的感知,所以作者通过提升了文本分支对normal和abnormal的区分,提升了CLIP对异常的识别能力

2025-04-15 21:27:52 1555

原创 【工业缺陷检测/工业质检】无监督检测(异常检测Anomaly Detection)与zero-shot零样本检测的区别与定义

工业质检领域,尤其是基于图像的工业缺陷检测领域,缺陷样本的收集可能非常困难,也就促生了无监督异常检测与zero-shot检测的研究方向,他们都不需要目标场景下的缺陷样本,因此大家可能会对他们的概念和具体使用场景存在疑问。因此本文重点对这两个任务进行介绍和对比。

2025-04-15 16:22:38 807

原创 OpenMMLab与PaddlePaddle算法库内容对比

详细介绍MMLab和PaddlePaddle具备的功能

2025-04-08 15:50:03 1310

原创 开源深度学习视觉算法库总结对比mmlab/paddle/detection/tensorflowhub/opencv

深度学习开源视觉库对比,包含paddle,mmlab,detectron、huggingface等

2025-04-08 11:48:10 1425

原创 【torch报错】RuntimeError: Unable to find a valid cuDNN algorithm to run convolution & realnet

网络参数等均采用的Visa下的realnet.yaml文件中的参数,本地显卡显存为24G,直接运行后出现这个错误。

2025-03-31 18:56:55 138

原创 图像生成/Data synthesis在异常检测anomaly detection中的主要作用

在近几年一些SOTA的异常检测算法中,很多都是基于扩散模型diffusion model的,同时很多论文的思路都放在了生成逼真的异常图像来辅助异常检测上,例如CVPR2024 RealNet、ECCV2024 GLAD等。开始时不太理解异常检测为什么要把重点放到异常合成/异常生成上,借助RealNet论文与deepseek简单写下自己的理解:在异常检测任务中,生成异常样本的主要目的是弥补真实异常数据的稀缺性,并通过可控的合成异常帮助模型学习更鲁棒的特征表示,从而提升检测性能。以下是具体分析:解决真实异常数据

2025-03-19 17:52:17 1033

原创 RealNet学习-基于真实合成异常的特征选择网络(CVPR 2024)

CCVPR2024异常检测新方法-RealNet学习

2025-03-19 17:21:53 654

原创 EfficientAD学习-基于教师学生网络和自编码器的高效异常检测方法

EfficientAD 是一种高效的视觉异常检测模型,其核心由三个模块构成:高效的补丁描述网络(PDN)、轻量级学生-教师模型和自动编码器。最近使用异常检测方法efficientAD在自己的工业数据集上应用,发现效果不太好,因此回到论文中,重新学习下其结构,寻找在自有数据集上效果不好的原因。通过轻量设计、损失函数优化和多模块协同,EfficientAD在异常检测性能和计算效率间实现了最佳平衡,为工业检测等实时场景提供了高效解决方案。

2025-03-15 13:19:13 761

原创 Could not build wheels for XXX, which is required to install pyproject.toml-based projects

could build wheels for horovod and tokenizers 问题解决方案

2024-02-07 09:46:21 3712 1

原创 深度学习模型使用GPU/cuda推理刚开始会很慢,CUDA/GPU预热加速

使用深度学习模型推理,即使使用gpu,前几个批次也会格外的慢,使用预热来解决

2023-12-27 11:32:23 2016 1

原创 tensorRT config的常用作用和配置(onnx转tensorRT)

onnx转tensorRT加速,使用tensorrt API实现时,使用config进行精度配置以及更多其他功能

2023-12-26 10:18:48 1020

原创 【torch-onnx-tensorRT加速】torch转tensorRT后加速效果

torch转tensorRT速度提升效果实测

2023-12-22 17:27:47 1419

原创 torch转onnx模型加速,onnx模型推理直接达到tensorRT速度,省去onnx转tensorRT的流程

torch转onnx直接实现tensorRT的速度

2023-12-20 16:07:14 890

原创 【torch加速】python onnx to tensorRT报错NotImplementedError: Converting dtype(‘float16‘) to a ctypes type

onnx转tensorRT报错解决:NotImplementedError: Converting dtype('float16') to a ctypes type

2023-12-19 09:50:15 588

原创 torch to onnx加速,复杂网络pytorch转onnx报错记录及解决

torch转onnx中问题的解决思路,设计interpolate算子,instance norm, grid sampler

2023-12-18 09:58:22 4596 3

原创 TypeError: Descriptors cannot not be created directly. If this call came from a _pb2.py file, your g

之前代码用的好好的,然后安装了TensorRT及一系列其他包之后,原来的代码在import过程就报以下错误。报该错误时,发现这些错误都是出现在mediapipe相关的导入中,跟pb2和protoc有关。

2023-12-15 10:07:46 1140

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除