k-近邻算法(kNN)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/universe_ant/article/details/52596760

k-近邻算法工作原理:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

k-近邻算法的一般流程:

(1)收集数据:可以使用任何方法。

(2)准备数据:距离计算所需要的数值,最好是结构化的数据格式。

(3)分析数据:可以使用任何方法。

(4)训练算法:此步骤不适用于k-近邻算法。

(5)测试算法:计算错误率。

(6)使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理。

k-近邻算法的伪代码:

对未知类别属性的数据集中的每个点依次执行以下操作:

(1)计算已知类别数据集中的点与当前点之间的距离;

(2)按照距离递增次序排序;

(3)选取与当前点距离最小的k个点;

(4)确定前k个点所在类别的出现频率;

(5)返回前k个点出现频率最高的类别作为当前点的预测分类。

我们现列举一个示例,其中包含训练集展示图如下:

示例图

对应4个点:(0,0), (0, 0.1), (1, 1), (1, 1.1),2个标签类别:A和B。然后根据训练集合,确定一个输入数据该属于哪一个标签类别(计算距离时使用欧式距离)。其python代码如下:

from numpy import *
import operator

# create data set with 4 points
def createDataSet():
    group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
    labels = ['A', 'A', 'B', 'B']
    return group, labels

# k-Nearest Neighbor
def classify0(inX, dataSet, labels, k):
    """
    For every point in our dataset:
        calculate the distance between inX and the current point
        sort the distances in increasing order
        take k items with lowest distances to inX
        find the majority class among these items
        return the majority class as our prediction for the class of inX

    params:
        inX: the input vector to classify
        dataSet: our full matrix of training examples
        labels: a vector of labels
        k: the number of nearest neighbors to use in the voting
    """
    # Distance calculation
    dataSetSize = dataSet.shape[0]
    diffMat = tile(inX, (dataSetSize, 1)) - dataSet
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)
    distances = sqDistances**0.5
    # Voting with lowest k distances
    sortedDistIndicies = distances.argsort()
    classCount = {}
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
    # sort dictionary
    sortedClassCount = sorted(classCount.iteritems(),
                              key=operator.itemgetter(1),
                              reverse=True)
    return sortedClassCount[0][0]


具体操作如下:

1. 进入该python文件所在目录,键入python,进入python命令行;

2. 输入以下命令:(假设你拷入的python代码文件名为kNN.py)

>>> import kNN
>>> group, labels = kNN.createDataSet()
>>> kNN.classify0([0,0], group, labels, 3)
'B'

可以确定(0, 0)属于B类别。



展开阅读全文

没有更多推荐了,返回首页