问题描述:
子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串:
- cnblogs
- belong
比如序列bo、bg、lg在母串cnblogs与belong中都出现过并且出现顺序与母串保持一致,我们将其称为公共子序列。最长公共子序列(Longest Common Subsequence,LCS),故名思义,是指在所有的子序列中最长的一个。子串是要求更严格的一种子序列,要求在母串中连续地出现。在上述例子中,最长公共子序列为blog(cn
blogs,
be
lon
g),最长公共子串为lo(cnb
logs,be
long)。
求解算法
对于母串X=<x1, x2, ..., xm>,Y=<y1, y2, ..., yn>,求LCS与最长公共子串。
暴力解法
假设m<n,对于母串X,我们可以暴力找出2的m次方个子序列,然后依次在母串Y中匹配,算法的时间复杂度会达到指数级O(n*2的m次)。显然,暴力求解不太适用于此类问题。
动态规划
假设Z=<z1, z2, ..., zk>是X与Y的LCS,我们观察到
如果Xm=Yn,则Zk=Xm=Yn,有Zk-1是Xm-1与Yn-1的LCS;
如果Xm≠Yn,则Zk是Xm与Yn-1的LCS,或者是Xm-1与Yn的LCS。
因此,求解LCS的问题则变成递归求解的两个子问题。但是,上述的递归求解的办法中,重复的子问题太多,效率低下。改进的办法——
用空间换时间,用数组保存中间状态,方便后面的计算。这就是动态规划(DP)的核心思想了。
DP求解LCS
用二维数组c[i][j]记录串x1x2...xi与y1y2...yj的LCS长度,则可得到状态转移方程:
代码实现:
public static int lcs(String str1, String str2) {
int len1 = str1.length();
int len2 = str2.length();
int[][] c = new int[len1+1][len2+1];
for(int i = 0; i <= len1; i++) {
for(int j = 0; j <= len2; j++) {
if(i == 0 || j == 0) {
c[i][j] = 0;
} else if(str1.charAt(i-1) == str2.charAt(j-1)) {
c[i][j] = c[i-1][j-1] + 1;
} else {
c[i][j] = max(c[i-1][j], c[i][j-1]);
}
}
}
return c[len1][len2];
}
DP求解最长公共子串
前面提到了子串是一种特殊的子序列,因此同样可以用DP来解决。定义数组的存储含义对于后面推导转移方程显得尤为重要,糟糕的数组定义会导致异常繁杂的转移方程。考虑到子串的连续性,将二维数组c[i][j]用来记录具有这样特点的子串——结尾同时也为串x1x2...xi与y1y2...yj的结尾——的长度。
得到转移方程:
代码如下:
public static int lcs(String str1, String str2) {
int len1 = str1.length();
int len2 = str2.length();
int result = 0;//记录最长公共子串长度
int[][] c = new int[len1+1][len2+1];
for(int i = 0; i <= len1; i++) {
for(int j = 0; j <= len2; j++) {
if(i == 0 || j == 0) {
c[i][j] = 0;
} else if(str1.charAt(i-1) == str2.charAt(j-1)) {
c[i][j] = c[i-1][j-1] + 1;
result = max(c[i][j], result);
} else {
c[i][j] = 0;
}
}
}
return result;
}
参考资料
[1] cs2035, Longest Common Subsequence.
[2] 一线码农, 经典算法题每日演练——第四题 最长公共子序列.
[2] 一线码农, 经典算法题每日演练——第四题 最长公共子序列.
[3] GeeksforGeeks, Dynamic Programming | Set 29 (Longest Common Substring).
本文转载自:http://www.cnblogs.com/en-heng/p/3963803.html