人工智能基础知识:计算机视觉、自然语言处理、机器学习、强化学习等技术简介

本文概述了人工智能领域的基础技术,包括计算机视觉、自然语言处理、机器学习(监督学习、非监督学习、半监督学习)和强化学习。介绍了逻辑回归、支持向量机、聚类、关联规则等核心算法,以及深度学习、Q-learning、Sarsa、DQN等强化学习方法。同时,提到了数据集、数据增强、搜索算法(如蒙特卡洛树搜索)在AI中的应用。最后,文章通过代码实例展示了机器学习中的矩阵乘法和数组切片操作。
摘要由CSDN通过智能技术生成


作者:禅与计算机程序设计艺术

1.简介

对于人工智能领域的研究者而言,理解并掌握计算机视觉、自然语言处理、机器学习、强化学习等技术,是保持竞争力的一项关键技能。而这些技术在现实应用中也逐渐成为行业标准,各种领域都要面对这些技术才能更加高效地解决问题。根据这个认识,我们可以总结一下人工智能相关领域的发展史。人工智能这个词汇一词一直存在着,但其真正含义则比较模糊。目前国内外有很多关于“人工智能”的定义,这些定义大多从两个角度出发,即客观性和主观性。客观性的定义通常是指通过技术实现智能,像人类一样。主观性的定义则是指从人的心理、生理、神经系统等多个方面发展起来的理论。客观性的定义比较简单,而主观性的定义则需要建立在非常多的理论基础之上。
从历史的角度看,人工智能的产生可以说是历史上一个重要的转折点。第一批出现的人工智能系统是在上世纪七十年代末到九十年代初。当时,日本的崔淳(Keigo Cuci)等人提出了一种新的机器学习方法,认为可以通过模仿人类的大脑学习知识。与此同时,麻省理工学院的艾伦·图灵在思想上对人工智能做出了澄清,他认为人工智能只是一些计算模型和统计学方法,不能称作真正的‘智’。
随着二十世纪六十年代至七十年代,人工智能开始进入硅谷。包括马文·明斯基、罗伯特·弗兰克尔等科学家在内的众多科研人员从事人工智能的研究工作。他们不断探索如何开发机器学习算法,并证明其能

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值