作者:禅与计算机程序设计艺术
1.简介
Tensorflow是Google推出的开源机器学习框架,能够实现高效的神经网络训练与模型部署。其主要特点包括:简单易用、高度模块化、自动求导、端到端可训练、分布式训练等。
本文将从以下三个方面对Tensorflow进行调优和数据预处理的技巧进行介绍:
- TensorFlow框架参数优化
- 数据预处理技巧
- 深度学习框架性能优化方法
一、TensorFlow框架参数优化
1. 设置GPU内存占用模式
默认情况下,Tensorflow会根据需要动态分配内存,因此可能会导致内存碎片较多,当显存紧张时,训练速度会受到影响。
如果你的训练任务只涉及几个小型模型,或者不需要运行很复杂的模型,那么可以设置GPU内存占用模式为“按需”,即只在需要时才分配显存。
import tensorflow as tf
with tf.<