作者:禅与计算机程序设计艺术
1.简介
数据预处理(Data Preprocessing)的重要性
随着互联网、移动互联网、云计算等新兴技术的发展,大量的数据产生,数据量也呈爆炸增长趋势。如何高效有效地对这些海量数据进行清洗、分析、建模和挖掘?如何从众多特征中选取最合适的特征进行训练、评估和预测模型的准确率呢?数据预处理(Data Preprocessing)就是解决上述问题的一个过程。它包括数据采集、数据清洗、数据变换、特征提取、数据切分及划分,使得数据更加容易理解、易于分析和机器学习模型更好地训练、部署。因此,数据预处理是指对原始数据进行提前处理,使其更加符合机器学习算法要求。本文将详细阐述数据的预处理方式及相应的算法原理。
Pandas库
Pandas是Python中一个非常流行的数据分析工具包,它提供了一种高效、直观的方法来处理和分析结构化的数据。在数据预处理过程中,Pandas库是不可或缺的基础工具。主要功能如下:
1.DataFrame:pandas中最常用的数据结构,具有表格型数据结构,能够存储 Series 或 DataFrame 对象中的数据。可以按列索引或者位置索引获取数据,并且可以轻松添加/删除/修改数据;
2.Series:由数