1. 背景介绍
1.1. 机器学习与神经网络
机器学习作为人工智能领域的重要分支,旨在赋予计算机从数据中学习并进行预测的能力。神经网络作为机器学习的强大工具之一,通过模拟人脑神经元结构,构建复杂的模型来解决各种问题。
1.2. 超参数调整的重要性
神经网络的性能很大程度上取决于其结构和参数设置。超参数,如学习率、网络层数、神经元数量等,对模型的训练效果至关重要。因此,掌握超参数调整技术与策略,是构建高效神经网络模型的关键。
2. 核心概念与联系
2.1. 超参数 vs. 参数
超参数和参数是神经网络中两个不同的概念:
- 参数:通过训练过程学习得到的权重和偏差,用于定义模型的具体功能。
- 超参数:在训练之前设置的模型结构和训练参数,用于控制模型的学习过程。
2.2. 常用超参数
- 学习率:控制模型学习的速度,过高会导致震荡,过低会导致收敛缓慢。
- 网络层数:影响模型的复杂度和表达能力。