神经进化算法(Neuroevolution) - 原理与代码实例讲解
1. 背景介绍
在人工智能的领域中,神经网络已经成为了解决复杂问题的强大工具。然而,设计一个高效的神经网络结构并非易事。传统的方法依赖于人工选择网络的架构和参数,这既费时又不一定能达到最优。神经进化算法(Neuroevolution)作为一种新兴的技术,通过模拟生物进化的过程来自动发展和优化神经网络结构,它打破了传统的束缚,为自动化机器学习(AutoML)领域带来了新的可能性。
2. 核心概念与联系
神经进化算法是一种集成了进化算法和神经网络的技术。它主要包括以下几个核心概念:
- 遗传算法(Genetic Algorithms):一种模拟自然选择和遗传学原理的优化算法。
- 种群(Population):一组可能的解决方案,这里指一组不同的神经网络结构。
- 适应度(Fitness):衡量解决方案好坏的标准,通常是网络在特定任务上的性能。
- 选择(Selection)&#x