基于生成对抗网络的动漫人物绘画风格迁移
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:动漫风格迁移,生成对抗网络 (GAN),图像处理,风格转换,深度学习
1. 背景介绍
1.1 问题的由来
随着深度学习技术的迅猛发展,特别是在图像生成与处理领域的突破,人们对创作与表达的需求日益多元化。在数字媒体时代,用户不仅希望创造出独特的视觉作品,还渴望探索不同的艺术风格。其中,动漫人物绘画风格迁移是一个极具创意与趣味性的任务,它旨在将一个动漫角色从一种特定的艺术风格转换成另一种风格,而保持其原始特征与表情不变。
1.2 研究现状
目前,风格迁移主要通过卷积神经网络 (CNNs) 来实现。这些方法通常包括内容损失与风格损失两部分,通过优化这两个损失函数达到既保留源图像的内容又体现目标风格的目的。然而,这种传统的风格迁移方法往往难以平衡内容与风格之间的关系,导致迁移效果不理想或者风格混杂。
1.3 研究意义
本研究聚焦于利用生成对抗网络 (GANs) 的优势进行动漫人物绘画风格迁移。相比传统方法,GANs 在图像生成方面展现出强大的能力