贝叶斯深度学习原理与代码实战案例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
深度学习在近年来取得了惊人的成果,然而,传统的深度学习模型通常被视为“黑盒”模型,其决策过程难以解释,这在某些需要高透明度和可信度的应用领域(如医疗诊断、金融风险评估等)中成为一个显著的障碍。贝叶斯深度学习(Bayesian Deep Learning, BDL)应运而生,它结合了贝叶斯统计和深度学习的优势,旨在提高模型的可解释性、鲁棒性和泛化能力。
1.2 研究现状
近年来,BDL受到了越来越多的关注,研究人员提出了多种不同的贝叶斯深度学习框架,如贝叶斯神经网络(Bayesian Neural Networks, BNNs)、贝叶斯深度学习变体(如Dropout、Bayesian Adam等)以及深度贝叶斯模型(如Deep Gaussian Processes, DGP)等。
1.3 研究意义
BDL的研究意义主要体现在以下几个方面:
- 提高模型的可解释性</