神经网络 (Neural Networks) 原理与代码实例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
自20世纪40年代以来,人工智能领域的研究一直在不断进步。从早期的符号主义、知识工程到80年代的机器学习,再到如今的深度学习,人工智能的发展历程充满了挑战和突破。神经网络作为深度学习的基础,其原理和应用已经成为了人工智能领域的关键技术。
1.2 研究现状
近年来,随着计算能力的提升和大数据的涌现,神经网络在图像识别、自然语言处理、语音识别等领域的应用取得了显著成果。从早期的感知机(Perceptron)到多层感知机(MLP)、卷积神经网络(CNN)、循环神经网络(RNN)以及近年来兴起的生成对抗网络(GAN)、Transformer等,神经网络模型在结构和功能上不断进化。
1.3 研究意义
神经网络的研究对于人工智能领域具有重要意义,主要体现在以下几个方面:
- 模拟人脑工作原理:神经网络模仿人