神经网络 (Neural Networks) 原理与代码实例讲解

神经网络 (Neural Networks) 原理与代码实例讲解

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

1. 背景介绍

1.1 问题的由来

自20世纪40年代以来,人工智能领域的研究一直在不断进步。从早期的符号主义、知识工程到80年代的机器学习,再到如今的深度学习,人工智能的发展历程充满了挑战和突破。神经网络作为深度学习的基础,其原理和应用已经成为了人工智能领域的关键技术。

1.2 研究现状

近年来,随着计算能力的提升和大数据的涌现,神经网络在图像识别、自然语言处理、语音识别等领域的应用取得了显著成果。从早期的感知机(Perceptron)到多层感知机(MLP)、卷积神经网络(CNN)、循环神经网络(RNN)以及近年来兴起的生成对抗网络(GAN)、Transformer等,神经网络模型在结构和功能上不断进化。

1.3 研究意义

神经网络的研究对于人工智能领域具有重要意义,主要体现在以下几个方面:

  1. 模拟人脑工作原理:神经网络模仿人
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值