计算机视觉中的半监督学习:伪标签技术实践
关键词:计算机视觉、半监督学习、伪标签、深度学习、数据增强、一致性正则化、模型训练
摘要:本文系统解析计算机视觉领域的伪标签(Pseudo-Labeling)技术,作为半监督学习的核心方法之一,伪标签通过利用模型对无标签数据的预测生成高置信度标签,有效缓解标注数据不足的问题。文章从基础理论出发,深入阐述伪标签的核心原理、算法实现与数学模型,结合PyTorch实战案例演示完整技术流程。涵盖数据增强、一致性正则化等关键技术的融合应用,分析在图像分类、目标检测、语义分割等场景的落地实践。最后探讨技术挑战与未来趋势,为研究者和工程实践提供系统化参考。
1. 背景介绍
1.1 目的和范围
计算机视觉任务(如图像分类、目标检测)依赖大量标注数据,但人工标注成本高昂。半监督学习通过结合少量标注数据与大量无标注数据提升模型性能,伪标签技术作为其中的主流方法,已在实际应用中展现显著效果。本文聚焦伪标签技术的核心原理、算法实现及工程实践,覆盖从理论推导到代码落地的全流程,适配学术研究与工业级应用需求。
1.2 预期读者
- 机器学习研究者:理解伪标签技术的理论边界与改进方向
- 计算机视觉工程师:掌握工业级落地的关键技术细节
- 深度学习从业者:学习半监督学习的工程化实施路径

订阅专栏 解锁全文
1063

被折叠的 条评论
为什么被折叠?



