基于DCT变换的图像压缩算法实现及Matlab代码

639 篇文章 306 订阅 ¥49.90 ¥99.00

基于DCT变换的图像压缩算法实现及Matlab代码

图像压缩是数字图像处理中一个重要的研究方向,它可以有效减小图像数据量,降低存储和传输成本。其中,离散余弦变换(Discrete Cosine Transform, DCT)被广泛应用于图像压缩领域,因其具有较好的能量集中特性和频率分布性质。

本文将介绍基于DCT变换的图像压缩算法,以及利用Matlab实现该算法的步骤和代码。

一、算法原理

DCT将一幅N*N大小的图像,视为N个列向量,每个列向量含N个元素,然后对这些列向量进行变换。对于一幅灰度图像I(x,y),DCT变换可以表示为以下式子:

F(u,v) = α(u)α(v)∑∑I(x,y)cos((2x+1)uπ/2N)cos((2y+1)vπ/2N)

其中,(u,v)表示DCT变换后的系数坐标,α(u)=sqrt(1/N),α(v)=sqrt(1/N),I(x,y)表示原始图像的像素值,N为图像大小。

在DCT变换后,大部分图像能量都被集中在左上角低频区域,随着系数坐标的增大,能量逐渐减小。因此,我们可以对DCT系数进行量化和舍弃,达到压缩图像的目的。

二、算法实现

以下是基于DCT变换的图像压缩算法的具体实现步骤:

1.读入原始图像,转换为灰度图像;
2.将灰度图像分割为非重叠的88像素块;
3.对每个8
8像素块进行DCT变换,并保留左上角的k个系数,k为所设定的阈值;
4.将保留的系数量化,并进行逆DCT变换;
5.将各个逆DCT变换得到的像素块拼接起来,得到压缩

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值