在回归分析中,线性模型的一般预测公式是:
把w0称作intercept_(截距),这两个属性是线性模型的共有属性。
一,线性回归
最基本的线性模型是线性回归,也称作最小二乘法(OLS),线性回归的原理是:计算训练集中y的预测值和其真实值之间的差值的平方Vn,使得Vn的和达到最小。从二维图形来看, 最优拟合曲线应该使各点到直线的距离的平方和(即残差平方和,简称RSS)最小:
线性模型详解:从线性回归到正则化
本文介绍了线性模型的基础,包括线性回归、岭回归、套索回归和弹性网模型。线性回归通过最小化残差平方和找到最佳拟合线。岭回归和套索回归通过L1和L2正则化防止过拟合,其中套索回归能忽略不重要特征。弹性网模型结合两者优点,适用于相关特征的场景。
在回归分析中,线性模型的一般预测公式是:
把w0称作intercept_(截距),这两个属性是线性模型的共有属性。
最基本的线性模型是线性回归,也称作最小二乘法(OLS),线性回归的原理是:计算训练集中y的预测值和其真实值之间的差值的平方Vn,使得Vn的和达到最小。从二维图形来看, 最优拟合曲线应该使各点到直线的距离的平方和(即残差平方和,简称RSS)最小:

被折叠的 条评论
为什么被折叠?