线性模型 第1篇:线性模型概述

线性模型详解:从线性回归到正则化
本文介绍了线性模型的基础,包括线性回归、岭回归、套索回归和弹性网模型。线性回归通过最小化残差平方和找到最佳拟合线。岭回归和套索回归通过L1和L2正则化防止过拟合,其中套索回归能忽略不重要特征。弹性网模型结合两者优点,适用于相关特征的场景。

在回归分析中,线性模型的一般预测公式是:

是预测值,读作"y hat",是特征的线性组合,把向量w称作 coef_(系数),公式是:

 

 把w0称作intercept_(截距),这两个属性是线性模型的共有属性。

一,线性回归

最基本的线性模型是线性回归,也称作最小二乘法(OLS),线性回归的原理是:计算训练集中y的预测值和其真实值之间的差值的平方Vn,使得Vn的和达到最小。从二维图形来看, 最优拟合曲线应该使各点到直线的距离的平方和(即残差平方和,简称RSS)最小:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

悦光阴

你的鼓励是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值