DAX:嵌套分组 原文:Nested grouping using GROUPBY vs SUMMARIZEEVALUATEADDCOLUMNS ( VALUES ( 'Product Category'[Category] ), "Max SubCat Avg Price", CALCULATE ( MAXX ( ADDCOLUMNS ( ...
DAX:翻译《介绍SUMMARIZECOLUMNS》 原文:Introducing SUMMARIZECOLUMNS建议用SUMMARIZECOLUMNS来代替SUMMARIZE函数,和ADDCOLUMNS/SUMMARIZE的组合。下面两个DAX的结果是一样的:Sales by Year and Color new style =SUMMARIZECOLUMNS ( 'Date'[Calendar Year], 'Prod...
DAX:翻译《使用SUMMARIZE和ADDCOLUMNS添加扩展列》 原文:Best practices using SUMMARIZE and ADDCOLUMNS在实践中,可以用SUMMARIZE添加分组列,而用ADDCOLUMNS添加计算列。ADDCOLUMNS( SUMMARIZE( <table>, <group by column>,... ), <column_name>, CALCULATE...
DAX:引用表变量中的列 引用表变量的列:VAR TableFaktGradPerAnsatt = ADDCOLUMNS ( SUMMARIZE ( 'dim Organization', 'dim Organization'[AnsattNr], "FG%", [Faktureringsgrad %] )...
Field Parameter的设置 1,Field Parameters 的层次结构2,Field Parameter的分组把多个列设置到一个组中文档:Power BI Field Parameters
DAX:GROUPBY 嵌套聚合 GROUPBY函数的作用是根据输入的表进行数据聚合,输入的表可以是表表达式,也就是说,GRUOPBY的参数可以是一个动态查询返回的表,也就是说GROUPBY函数主要用于嵌套聚合的情况。GROUPBY (<table> [, <groupBy_columnName> [, <groupBy_columnName> [, …]]] [, <name>...
Newtonsoft.Json 入门介绍 本人是C#小白,这里摘抄并整理了两位大神的文章:Newtonsoft.Json笔记 -JToken、JObject、JArray详解Json 基于类 Newtonsoft.Json.Linq.JToken的应用简介简单介绍如何使用Newtonsoft.Json类库和操作Json对象,这里主要介绍Linq to Json类。Newtonsoft.Json封装类实现了JToken,直接对JS...
PowerBI 开发 第23篇:共享数据集 Power BI共享数据集的优点是:只要数据集刷新,那么引用该数据集的报表都会自动刷新,节省了报表数据刷新的时间和算力,缺点是:使用共享数据集的报表,虽然可以新增Measure(Measure仅存在于本地报表中,不会同步到共享dataset),但是无法修改数据模型,比如,无法修改关系,不能创建计算列,不能查看共享Measure的定义等,这导致报表开发的自由度受到限制。一,什么是共享数据集?在...
DAX:概述EARLIEST和EARLIER函数 EARLIEST和EARLIER函数只用于行上下文中,并且主要用于计算列的行上下文中。行上下文的作用是迭代,逐行扫描表,并且不会筛选数据。EARLIER函数用于访问外层行上下文,即使用外层行上下文,而不是最内层的行上下文检索列的值。EARLIER(<column>, <number>) EARLIEST(<column>) 注意:EARLIER函数...
DAX:概述ALL函数 简单的说,当ALL用作表函数时,忽略应用到表上的任何过滤器,并返回数据表;当ALL用作CALCULATE和CALCULATETABLE函数中修饰器时,ALL函数从扩展表中移除已经应用的过滤上下文。注意自动存在(auto-eixist)对ALL()函数的影响。正常情况下,包含 ALL() 函数的 DAX 表达式,会忽略已应用到表或指定列上的任何过滤器。但是,由于auto-exists机制的存...
DAX:LOOKUPVALUE 函数 LOOKUPVALUE函数用于根据一个或多个搜索条件,从另一个表中获取一个或0个值。LOOKUPVALUE运行在行上下文中,根据当前表中的当前行,从另一个表中查找条件相等的行,查找不需要两个表之间存在关系,搜索结果也不受过滤条件的影响。当两个表之间存在关系时,考虑使用RELATED函数,因为RELATED函数查询性能更快。LOOKUPVALUE( <result_columnN...
DAX:GROUPBY函数 DAX 中的 SUMMARIZE 函数功能强大,但同时也很难使用。 它可用于执行表之间的分组和连接,正如我们之前在分组数据一文中描述的那样。 不幸的是,它在计算聚合值时存在一些众所周知的性能问题。除了性能之外,SUMMARIZE 的计算限制是它无法聚合在查询本身内动态计算的值。一,SUMMARIZE函数的限制例如,考虑以下查询,它应该为每个产品类别返回相关子类别的平均价格的最大值。ADD...
DAX:SUMMARIZE的秘密 作为一个查询函数,SUMMARIZE 执行三个操作:它可以按表本身或相关表的任何列对表进行分组;它可以创建新列,在行上下文和过滤上下文中计算表达式;它可以产生不同级别的小计(subtotal)。在 SUMMARIZE 的三个主要操作中,只有第一个是安全的。 另外两个操作——创建新列和计算小计——应该避免。 并不是说这些功能不起作用。 问题是 SUMMARIZE 的语义非常复杂,以至于...
VS配置OpenCV OpenCV下载地址:http://opencv.org/downloads.html,根据操作系统选择合适的安装包。本文使用的是OpenCV-3.4.16的Windows版本,Visual Studio是VS2022版本。我把OpenCV解压到D:\Program Files (x86)\opencv。1,在Windows 10 中添加环境变量在系统变量的Path变量中添加以下两个路径:...
pandas Series矢量化的字符串函数——Series.str 在清理文本数据时,对pandas Series(序列)可以使用map函数,所有的字符串都可以应用字符串函数或正则表达式,但是如果存在NA,就会报错。为了解决这个问题,Series有一些可以跳过NA值的字符串操作方法,这可以通过Series的str属性来访问。s1 = pd.Series(['Mouse', 'dog', 'house and parrot', '23', np.NaN])s...
pandas merge 和 concat merge是按照列值或索引值进行连接,concat是按照轴进行拼接。一,merge数据库风格的连接是merge,DataFrame.merge(right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', ...
pandas reindex、set_index 和 reset_index 操纵索引包括:重索引、设置索引、替换轴的索引、重置索引一,重索引 (reindex)重索引是指数据框按照新的索引进行排列,如果已存的索引和新索引不匹配,那么使用NA来填充。DataFrame.reindex(labels=None, index=None, columns=None, axis=None, method=None, copy=True, level=...
pandas 排序和排名 Series和DataFrame可以按照索引进行排序,也可以按照值来排序,对值也可以进行排名。一,按照索引排序(sort by index)对于一个Series或DataFrame,可以按照索引进行排序,使用sort_index()函数来实现索引的排序:DataFrame.sort_index(axis=0, level=None, ascending=True, inplace=Fal...
pandas pivot、pivot_table和melt pandas的pivot和pivot_table 用于表格数据的行列互换,而melt用于unpivot 表格数据。1,pivot有如下数据集:import pandas as pdimport numpy as nptable = {"Item":['Item0','Item0','Item1','Item1'],"CType":['Gold','Bronze','Gold',...
pandas stack和unstack 在使用pandas进行数据整理时,经常会用到stack和unstack两个函数。stack直译过来是堆叠,堆积,unstack是展开。但是stack和unstack的作用类似于pivot和unpivot,stack用于把列转换为行,而unstack用于把行转换为列。因此,可以把stack和unstack的功能解释为行列互换。stack():从列到行堆叠,把列转换为行unstack():从行...