模板,FFT 快速傅里叶变化

大神的模板。。偷过来用着先

/*
 	algorithm : High-Precision FFT

*/
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define N 200005
#define pi acos(-1.0) // PI值
using namespace std;
struct complex
{
	double r,i;
	complex(double real=0.0,double image=0.0){
		r=real;	i=image;
	}
	// 以下为三种虚数运算的定义
	complex operator + (const complex o){
		return complex(r+o.r,i+o.i);
	}
	complex operator - (const complex o){
		return complex(r-o.r,i-o.i);
	}
	complex operator * (const complex o){
		return complex(r*o.r-i*o.i,r*o.i+i*o.r);
	}
}x1[N],x2[N];
char a[N/2],b[N/2];
int sum[N]; // 结果存在sum里
void brc(complex *y,int l) // 二进制平摊反转置换 O(logn)
{
	register int i,j,k;
	for(i=1,j=l/2;i<l-1;i++)
	{
		if(i<j)	swap(y[i],y[j]); // 交换互为下标反转的元素
								// i<j保证只交换一次
		k=l/2;
		while(j>=k) // 由最高位检索,遇1变0,遇0变1,跳出
		{
			j-=k;
			k/=2;
		}
		if(j<k)	j+=k;
	}
}
void fft(complex *y,int l,double on) // FFT O(nlogn)
				     		// 其中on==1时为DFT,on==-1为IDFT
{
	register int h,i,j,k;
	complex u,t; 
	brc(y,l); // 调用反转置换
	for(h=2;h<=l;h<<=1) // 控制层数
	{
		// 初始化单位复根
		complex wn(cos(on*2*pi/h),sin(on*2*pi/h));
		for(j=0;j<l;j+=h) // 控制起始下标
		{
			complex w(1,0); // 初始化螺旋因子
			for(k=j;k<j+h/2;k++) // 配对
			{
				u=y[k];
				t=w*y[k+h/2];
				y[k]=u+t;
				y[k+h/2]=u-t;
				w=w*wn; // 更新螺旋因子
			} // 据说上面的操作叫蝴蝶操作…
		}
	}
	if(on==-1)	for(i=0;i<l;i++)	y[i].r/=l; // IDFT
}
int main(void)
{
	int l1,l2,l;
	register int i;
	while(scanf("%s%s",a,b)!=EOF)
	{
		l1=strlen(a);
		l2=strlen(b);
		l=1;
		while(l<l1*2 || l<l2*2)	l<<=1; // 将次数界变成2^n
					      				// 配合二分与反转置换
		for(i=0;i<l1;i++) // 倒置存入
		{
			x1[i].r=a[l1-i-1]-'0';
			x1[i].i=0.0;
		}
		for(;i<l;i++)	x1[i].r=x1[i].i=0.0;
		// 将多余次数界初始化为0
		for(i=0;i<l2;i++)
		{
			x2[i].r=b[l2-i-1]-'0';
			x2[i].i=0.0;
		}
		for(;i<l;i++)	x2[i].r=x2[i].i=0.0;
		fft(x1,l,1); // DFT(a)
		fft(x2,l,1); // DFT(b)
		for(i=0;i<l;i++)	x1[i]=x1[i]*x2[i]; // 点乘结果存入a
		fft(x1,l,-1); // IDFT(a*b)
		for(i=0;i<l;i++)	sum[i]=x1[i].r+0.5; // 四舍五入
		for(i=0;i<l;i++) // 进位
		{
			sum[i+1]+=sum[i]/10;
			sum[i]%=10;
		}
		l=l1+l2-1;
		while(sum[l]<=0 && l>0)	l--; // 检索最高位
		for(i=l;i>=0;i--)	putchar(sum[i]+'0'); // 倒序输出
		putchar('\n');
	}
	return 0;
}


阅读更多

没有更多推荐了,返回首页