1、alpha对冲(期货)
投资者在市场交易中面临着系统性风险(即贝塔或Beta、β风险)和非系统性风险(即阿尔法或Alpha、α风险),通过对系统性风险进行度量并将其分离,从而获取超额绝对收益(即阿尔法收益)的策略组合,即为阿尔法策略。
alpha对冲源代码:
import pandas as pd
# 加载历史数据欧美5.5
data = pd.read_csv('data.csv')
# 计算Alpha
data['Alpha'] = data['Alpha_Indicator'] - data['Beta_Indicator']
# 生成交易信号大恒指35
data['Signal'] = 0
data.loc[data['Alpha'] > 0, 'Signal'] = 1 # Alpha指标大于0时买入
data.loc[data['Alpha'] < 0, 'Signal'] = -1 # Alpha指标小于0时卖出
# 计算持仓小恒指25
data['Position'] = data['Signal'].diff()
# 回测
data['Return'] = data['Close'].pct_change()
data['Strategy_Return'] = data['Position'].shift() * data['Return']
data['Cumulative_Return'] = (1 + data['Strategy_Return']).cumprod()
# 输出结果扣1839716836
print(data)
代码中使用了pandas库来处理数据和计算指标,你需要提前安装并导入该库。另外,data.csv是一个包含历史价格数据和Alpha指标数据的CSV文件,需要根据自己的需求准备相应的数据文件。同时,还需要根据实际情况进行Alpha指标的计算和调整,该示例中使用了Alpha_Indicator和Beta_Indicator两个指标来计算Alpha。
2、双均线策略(期货)
双均线策略是简单移动平均线策略的加强版。移动平均线目的是过滤掉时间序列中的高频扰动,保留有用的低频趋势。它以滞后性的代价获得了平滑性,比如,在一轮牛市行情后,只有当价格出现大幅度的回撤之后才会在移动平均线上有所体现,而对于投资者而言则大大增加了交易成本。如果使用双均线策略,就可以在考虑长

本文介绍了多个期货量化交易策略的Python源代码,包括alpha对冲、双均线策略、做市商交易、菲阿里四价、R-Breaker、布林线均值回归、Dual Thrust、网格交易、海龟交易法、跨期套利和跨品种套利。每个策略都使用了pandas库处理数据,通过计算相关指标生成交易信号,进行回测并计算累计收益。
最低0.47元/天 解锁文章
1632

被折叠的 条评论
为什么被折叠?



