民锋国际期货量化交易策略源代码大全

本文介绍了多个期货量化交易策略的Python源代码,包括alpha对冲、双均线策略、做市商交易、菲阿里四价、R-Breaker、布林线均值回归、Dual Thrust、网格交易、海龟交易法、跨期套利和跨品种套利。每个策略都使用了pandas库处理数据,通过计算相关指标生成交易信号,进行回测并计算累计收益。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、alpha对冲(期货)

投资者在市场交易中面临着系统性风险(即贝塔或Beta、β风险)和非系统性风险(即阿尔法或Alpha、α风险),通过对系统性风险进行度量并将其分离,从而获取超额绝对收益(即阿尔法收益)的策略组合,即为阿尔法策略。

alpha对冲源代码:

import pandas as pd

# 加载历史数据欧美5.5

data = pd.read_csv('data.csv')

# 计算Alpha

data['Alpha'] = data['Alpha_Indicator'] - data['Beta_Indicator']

# 生成交易信号大恒指35

data['Signal'] = 0

data.loc[data['Alpha'] > 0, 'Signal'] = 1  # Alpha指标大于0时买入

data.loc[data['Alpha'] < 0, 'Signal'] = -1  # Alpha指标小于0时卖出

# 计算持仓小恒指25

data['Position'] = data['Signal'].diff()

# 回测

data['Return'] = data['Close'].pct_change()

data['Strategy_Return'] = data['Position'].shift() * data['Return']

data['Cumulative_Return'] = (1 + data['Strategy_Return']).cumprod()

# 输出结果扣1839716836

print(data)

代码中使用了pandas库来处理数据和计算指标,你需要提前安装并导入该库。另外,data.csv是一个包含历史价格数据和Alpha指标数据的CSV文件,需要根据自己的需求准备相应的数据文件。同时,还需要根据实际情况进行Alpha指标的计算和调整,该示例中使用了Alpha_Indicator和Beta_Indicator两个指标来计算Alpha。

2、双均线策略(期货)

双均线策略是简单移动平均线策略的加强版。移动平均线目的是过滤掉时间序列中的高频扰动,保留有用的低频趋势。它以滞后性的代价获得了平滑性,比如,在一轮牛市行情后,只有当价格出现大幅度的回撤之后才会在移动平均线上有所体现,而对于投资者而言则大大增加了交易成本。如果使用双均线策略,就可以在考虑长

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值