程序员面试、算法研究、机器学习、大模型/ChatGPT/AIGC、论文审稿、具身智能/人形机器人、RAG等16大系列集锦

作者:July,七月在线创始人兼CEO、结构之法算法之道blog之博主
时间:2010年10月-2024年12月,一直在不断更新中..
出处:http://blog.csdn.net/v_JULY_v 

目录

前言

第一部分 经典重温:微软面试、算法研究、编程艺术、红黑树系列

一、微软面试100题系列

二、十五个经典算法研究与总结、目录+索引

三、程序员编程艺术第一~四十章集锦与总结

四、红黑树、B树、R树、Trie树

第二部分 从AI到大模型:机器学习、ChatGPT、改造Transformer、AIGC与多模态等

五、机器学习十大算法系列

5.1 AI数学基础

5.2 AI工程实践

5.3 AI经典模型:从SVM XGBoost CNN RNN LSTM

六、大模型与ChatGPT系列:原理、论文、代码、应用

6.1 ChatGPT与o1的原理与实现系列

6.2 国内外类ChatGPT:比如Llama2、Llama3、Llama3.1

6.3 大模型背后的关键技术与前沿发展:LoRA/并行训练/长度扩展

6.4 医疗及LLM与KG、DB的结合

七、对Transformer的各种改进与挑战:mamba、KAN、TTT、vLLM及各种注意力等

7.1 改进Transformer与注意力:KAN、TTT、Flash Attention、PagedAttention

7.2 挑战Transformer:mamba、mamba2、mamba各种变体

​八、火爆全球的deepseek系列模型

 九、AIGC与CV多模态:图像/视频/代码生成/自动驾驶

9.1 AIGC/AI绘画/CV多模态/图像生成

9.2 视频生成,含OpenAI首个视频生成模型sora

9.3 其他生成:代码生成

9.4 自动驾驶大模型

第三部分 大模型加速驱动协作机器人、具身智能、人形机器人的发展

十、工业协作机器人(含ACT/Diffusion Policy/RL)

10.1 模仿学习的集中爆发:斯坦福机器人Mobile Aloha、UMI、DexCap、SRT

10.2 预训练 + RL机器人

十一、机器人大模型:GR2/RDT等

十二、视觉语言动作机器人:从VLM到VLA

12.1 始于RT2

12.2 VLA模型的里程碑π0

十三、具身智能背景之下:人形机器人的复现与开发

13.1 斯坦福的各个人形机器人,比如HumanPlus、iDP3

13.2 CMU、UC San Diego、英伟达的各个人形机器人,比如OmniH2O、TeleVision、HOVER等

第四部分 我司七月一系列的项目实践:科研论文大模型、RAG、智能体等

十四、七月科研论文大模型:含论文的审稿微调、阅读、写作、修订

14.1 七月论文审稿GPT(从第1版到第6版)

14.2 论文的阅读:基于大模型的翻译系统、检索、摘要、对话系统

14.3 论文的写作:idea的提出(涉及论文的抓取 检索 召回 排序 提炼)

14.4 七月硕士论文助手——论文修订、语法纠错、润色等

十五、RAG知识库问答系列

15.1 七月RAG第一版之探索,基本流程与基本框架

15.2 七月RAG第二版之探索,通用文档处理

十六、智能体Agent项目

16.1 AI Agent

十七、其它重要文章节选

17.1、经典数据结构 & 算法系列

17.2、数据处理/网站架构系列

17.3、推荐 & 搜索算法系列

17.4、其它

后记

转发送书


前言

开博10年有余,回首这10余年,自己一开始侧重编程、面试、数据结构/算法,中途侧重数据挖掘、机器学习,近期则专攻AIGC/ChatGPT,而自己在本blog上也着实花费了巨大的时间和精力,写的东西可能也够几本书的内容了。然不管怎样,希望我能真真正正的为读者提供实实在在的价值与帮助

比如,下图是2023年ChatGPT、大模型、具身智能大爆发之前,每一年所写的文章


2024.09.19最新更新:2015年,July团队正式创业,创办七月在线,一开始做教育,后扩科技,如今是「集AI大模型教育、应用开发、机器人解决方案为一体的科技公司」

### DeepSeek本地部署教程 #### 准备工作 为了顺利部署DeepSeek,在开始之前需确认计算机已连接互联网并满足最低硬件需求。对于Windows环境下,访问指定网站下载适合操作系统的Ollama框架是必要的前置条件[^3]。 #### Ollama框架安装 前往官方网站https://ollama.com/download选取对应平台的安装包进行下载与安装过程。此阶段建议按照默认设置完成安装流程,并注意记录安装路径以便后续配置环境变量之用。 #### 配置环境变量 通过Win键激活搜索栏输入“环境”,进入系统属性中的高级设置页面来编辑环境变量。将先前记下的Ollama安装目录添加至Path列表内,确保命令提示符能够识别`ollama`指令。 #### 版本选择与初始化 返回Ollama官网首页利用Search功能定位目标模型版本;依据个人设备性能挑选合适大小的预训练模型(例如7B参数量),随后依照官方指引执行相应命令实现快速拉取镜像文件。一般情况下采用如下方式获取最新版: ```bash ollama run deepseek-r1:latest ``` 针对不同规模的需求亦可通过特定标签调用其他容量选项,比如8B、14B或是32B版本: ```bash ollama run deepseek-r1:<version> # 替换<version>为具体数值如8b, 14b 或者 32b ``` #### 模型运行验证 当上述步骤均无误后,借助CMD窗口内的`ollama list`检查当前可用实例状态,紧接着运用`ollama run ...`语句正式启动所选模型服务[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

v_JULY_v

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值