vacancy_alley
码龄5年
关注
提问 私信
  • 博客:916
    916
    总访问量
  • 5
    原创
  • 2,205,806
    排名
  • 0
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2020-02-14
博客简介:

vacancy_alley的博客

查看详细资料
个人成就
  • 获得0次点赞
  • 内容获得0次评论
  • 获得0次收藏
创作历程
  • 5篇
    2020年
成就勋章
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

179人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

批量归一化和残差网络;凸优化;梯度下降

批量归一化(BatchNormalization) 对输入的标准化(浅层模型) 处理后的任意一个特征在数据集中所有样本上的均值为0、标准差为1。 标准化处理输入数据使各个特征的分布相近 批量归一化(深度模型) 利用小批量上的均值和标准差,不断调整神经网络中间输出,从而使整个神经网络在各层的中间输出的数值更稳定。 1.对全连接层做批量归一化 位置:全连接层中的仿射变换和激活函数之间。 全连接: x=...
原创
发布博客 2020.02.25 ·
171 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Task04:机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer

机器翻译和数据集 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 import sys sys.path.append('/home/kesci/input/d2l9528/') import collections import d2l impor...
原创
发布博客 2020.02.19 ·
114 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Task03:过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶

过拟合、欠拟合及其解决方案 模型选择、过拟合和欠拟合 训练误差和泛化误差: 在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差(generalization error)。通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。计算训练误差和泛化误差可以使用之前介绍过的损失函数,例如线...
原创
发布博客 2020.02.19 ·
226 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Day1:文本预处理、语言模型、循环神经网络学习打卡

文本预处理 文本是一类序列数据,一篇文章可以看作是字符或单词的序列,本节将介绍文本数据的常见预处理步骤,预处理通常包括四个步骤: 1.读入文本 2.分词 3.建立字典,将每个词映射到一个唯一的索引(index) 4.将文本从词的序列转换为索引的序列,方便输入模型 文本预处理的具体过程: import collections import re def read_time_machine(): ...
原创
发布博客 2020.02.14 ·
177 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Day1:线性回归、softmax与分类模型、多层感知机 学习打卡

小l
原创
发布博客 2020.02.14 ·
228 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏