哪些算法和数据结构是需要程序员必须掌握的?

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/valada/article/details/81024993

作为一名程序员,大家有没有想过:编码最本质的知识是什么?或许是算法和数据结构,至少很多人这么认为。

本场 Chat 从以下几个方面讨论算法的性能:

  1. 算法研究的科学方法;
  2. 编写衡量算法的时间性能类 StopWatch;
  3. ThreeSum 的例子阐述算法的方方面面;
  4. 衡量时间复杂度的一种简单度量:波浪线表示;
  5. 一些典型的 Order of Growth, 比如 log2n, n, nlog2n, n2 , n3;
  6. 分析 Java 中各种类型的内存消耗,包括原生类型,对象类型,字符串和数组。

1. 科学方法(Scientific method)

以下 5 个步骤总结了此方法,依次为如下,我们设计的实验必须是可以重现的,我们形成的假设必须是具有真伪的。

enter image description here

2. 时间度量

测试程序运行的精确时间有时是困难的,但是我们有许多辅助工具。在这里,我们简化程序运行时间的模型,考虑各种输入情况,并测试每种情况下的运行时间,编写的这个程序名称为:Stopwatch.java,如下所示:

 1 public class Stopwatch {  2 3    private final long start; 4 5    public Stopwatch() { 6        start = System.currentTimeMillis(); 7    }  8 9    public double elapsedTime() {10        long now = System.currentTimeMillis();11        return (now - start) / 1000.0;12    }1314    public static void main(String[] args) {15        int n = Integer.parseInt(args[0]);1617        // sum of square roots of integers from 1 to n using Math.sqrt(x).18        Stopwatch timer1 = new Stopwatch();19        double sum1 = 0.0;20        for (int i = 1; i <= n; i++) {21            sum1 += Math.sqrt(i);22        }23        double time1 = timer1.elapsedTime();24        StdOut.printf("%e (%.2f seconds)\n", sum1, time1);2526        // sum of square roots of integers from 1 to n using Math.pow(x, 0.5).27        Stopwatch timer2 = new Stopwatch();28        double sum2 = 0.0;29        for (int i = 1; i <= n; i++) {30            sum2 += Math.pow(i, 0.5);31        }32        double time2 = timer2.elapsedTime();33        StdOut.printf("%e (%.2f seconds)\n", sum2, time2);34    }35} 

对于大多数程序,首先我们能想到的量化观察是它们有问题的大小(problem size)区别,这个表征了计算复杂度或计算难度。

一般地,问题大小既可以指通过输入数据的大小,也可以指通过命令行参数输入值。

直觉上,运行时间应该会随着问题大小而增加,但是增加的程度怎么度量,这是我们编程运行程序时常遇到的问题。

3. ThreeSum 例子

为了阐述方法,我们先引入一个具体的编程问题:ThreeSum,它是在给定的含有 n 个元素的数组中找出三元组之和等于 0 的个数。

这个问题最简单的一个解法:枚举。代码如下:

 1 public class ThreeSum { 2 3    // print distinct triples (i, j, k) such that a[i] + a[j] + a[k] = 0 4    public static void printAll(int[] a) { 5        int n = a.length; 6        for (int i = 0; i < n; i++) { 7            for (int j = i+1; j < n; j++) { 8                for (int k = j+1; k < n; k++) { 9                    if (a[i] + a[j] + a[k] == 0) {10                        StdOut.println(a[i] + " " + a[j] + " " + a[k]);11                    }12                }13            }14        }15    } 1617    // return number of distinct triples (i, j, k) such that a[i] + a[j] + a[k] = 018    public static int count(int[] a) {19        int n = a.length;20        int count = 0;21        for (int i = 0; i < n; i++) {22            for (int j = i+1; j < n; j++) {23                for (int k = j+1; k < n; k++) {24                    if (a[i] + a[j] + a[k] == 0) {25                        count++;26                    }27                }28            }29        }30        return count;31    } 3233    public static void main(String[] args)  { 34        int[] a = StdIn.readAllInts();35        Stopwatch timer = new Stopwatch();36        int count = count(a);37        StdOut.println("elapsed time = " + timer.elapsedTime());38        StdOut.println(count);39    } 40} 

我们在这里主要关心的是输入数据大小与运行时长的关系。我们循着如下的思路分析两者间的关系。

3.1 加倍假设

加倍假设(Doubling hypothesis)对于大量的程序而言,我们能很快地形成如下假设:假如输入数据的个数加倍,运行时间怎么变化。

3.2 经验分析

经验分析(Empirical analysis)一种简单的实现加倍假设的方法是使输入数据的个数加倍,然后观察对运行时长的影响。

如下所示为一个简单的通过加倍输入个数,测试运行时长的程序:DoublingTest.Java。

 1public class DoublingTest { 2 3    public static double timeTrial(int n) { 4        int[] a = new int[n]; 5        for (int i = 0; i < n; i++) { 6            a[i] = StdRandom.uniform(2000000) - 1000000; 7        } 8        Stopwatch s = new Stopwatch(); 9        ThreeSum.count(a);10        return s.elapsedTime();11    }121314    public static void main(String[] args) { 15        StdOut.printf("%7s %7s %4s\n", "size", "time", "ratio");16        double previous = timeTrial(256);17        for (int n = 512; true; n += n) {18            double current = timeTrial(n);19            StdOut.printf("%7d %7.2f %4.2f\n", n, current, current / previous);20            previous = current;21        } 22    } 23}

再回到 ThreeSum.java 程序中,我们生成一系列随机数,填充到输入数组中,每一个时步都加倍输入元素个数,然后观察到每一次程序所运行的时间都会大致增加 8 倍,这个就可以让我们下结论说输入数据加倍后运行时间增加了 8 倍。

如下图中左侧视图所示,当输入大小为 4K 时,运行时长为 64T,当输入带下为 8K 时,运行时长变为原来的 8 倍:512T。

enter image description here

Log–logplot:绘制 log 图也是衡量运行时间的一种方法,因为是log级别的,所以与上面说的经验公式没有本质区别,如图右所示,取完对数后,输入数据大小与运行时间的对数变为线性关系。

3.3 数学分析

总的运行时长受到两个主要指标影响:

  • 执行每一个语句的成本
  • 执行每一个语句的次数

其中,第一个是系统属性,后面一个是算法的属性。假如我们知道了程序中所有指令的这两个属性值,那么两者相乘求和后便是整个程序的运行时间。

主要的挑战是确定第二个指标,即语句的执行次数。一些语句是很容易分析出执行次数,比如将 count 设置初始值为 0,在 ThreeSum.count() 中仅仅执行一次。

但是,有些需要更高层次的推理演算才能得到语句的执行频次,比如 if 语句被执行的次数恰好为:n(n-1)(n-2)/6。

4. 波浪线符号

我们用波浪线符号形成更加简单的近似表示。首先,我们用数学表达式的主项作为波浪线的近似表示。写作:∼g(n) 。表示为算法的时间复杂度,当它被 f(n) 除的时候,随着 n 的增大,g(n) 接近1。我们也可以写 g(n) ~ f(n) 表示,随着 n 的增大g(n)/f(n) 接近 1。

在这个表示下,我们忽略表达式中次要项。例如,在 ThreeSum.count() 中的 if 语句的执行次数用波浪线表示为:∼n3/6。因为 n(n-1)(n-2)/6 = n3/6 –n2/2+ n/3,当被n3/6 相除时,随着 n 的增长,等于1。

我们专注于那些执行次数最多的指令,有时指内层循环。在 ThreeSum.java 程序中,我们可以合理地推理出内层循环以外的指令相对来说不重要。

5. 增长的阶数(order of growth)

分析一个程序的运行时长时,关键的一个点是大多数程序的运行时长满足关系:T(n) ~cf(n),此处c是一个常数,f(n) 是一个关于时间的增长阶次函数。对于一些典型的程序,f(n) 是一个函数,例如: log2n、n、nlog2n、n2、n3。

再看 ThreeSum.java 程序,增长的阶数等于 n3,常数 c 的值取决于执行指令的成本和次数的细节上,但是我们通常不需要算出精确值。刚才说加倍输入数据个数,运行时长变为原来 8 倍,具体推导公式如下:

enter image description here

下面详细列出程序的增长阶数的典型例子:

enter image description here

6. 内存消耗

除了需要考虑时间成本,我们也要注意内存消耗。内存消耗在 Java 程序中很好地被定义,但是 Java 程序可以编译在各种不同配置环境的计算设备上,内存消耗因实现方式不同而不同,在这里讨论 Java 中三种类型的内存消耗。

6.1 原生类型(Primitive types)

因为 java int 数据类型是整数值的集合,取值范围位于:−2,147,483,648 ~ 2,147,483,647,所占的字节数为 4 个。如下图所示为主要原生类型所占的内存字节数:

enter image description here

6.2 对象

对象(objects)为了确定一个对象的内存消耗,我们需要求以下两者的和:

  • 每一个实例的内存消耗
  • 每一个对象关联的头部消耗,典型的是 8 个字节

例如,一个复数对象消耗内存为 32 个字节,其中 16 个字节被头部所占,另外,每个 double 变量各占 8 个字节。

enter image description here

对一个对象的引用通常消耗 8 个字节的内存。当一个数据类型包含一个对象的引用时,我们必须单独分配 8 个字节用于存储引用关系,每个对象的头部消 耗16 个字节,还包括此对象的实例变量所耗内存。

6.3 数组和字符串(Arraysand strings)

在 Java 中,数组是通过 objects 被实现的,典型的实现方法:带有 2 个实例变量,一个指针指向第一个元素的首地址,另一个指向元素长度。对于原生类型,含有 n 个元素的数组用 24 字节的头部信息,另外包括存储一个元素需要的字节数乘以元素个数。典型的例子如下:

enter image description here


本文首发于GitChat,未经授权不得转载,转载需与GitChat联系。

阅读全文: http://gitbook.cn/gitchat/activity/5b35856c18887615fe36ffa7

您还可以下载 CSDN 旗下精品原创内容社区 GitChat App ,阅读更多 GitChat 专享技术内容哦。

FtooAtPSkEJwnW-9xkCLqSTRpBKX

展开阅读全文

没有更多推荐了,返回首页