算法设计与分析——分治术与递归(一)

本文介绍了递归算法的定义及其与分治法的关系,通过排列问题和整数划分问题的实例,详细阐述了如何利用递归和分治策略解决复杂问题,将大型问题层层分解为规模更小的相似问题直至直接求解。
摘要由CSDN通过智能技术生成

一. 定义

  • 直接或间接地调用自身的算法称为递归算法。用函数自身给出定义的函数称为递归函数。

  • 由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。

    分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。

二. 具体问题分析

  • 排列问题

问题描述:设计一个递归算法生成n个元素{r1,r2,…,rn}的全排列。

问题解决:设R={r1,r2,…,rn}是要进行排列的n个元素,Ri=R-{ri}。集合X中元素的全排列记为perm(X)。perm(X)(ri)表示在全排列perm(X)的每一个排列后加上后缀得到的排列。我们可以发现,R的全排列可以由以下的算法得到:依次将R中的一个元素换到最后的位置,并求出剩余元素的全排列。这样我们把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,那么R的全排列可归纳定义如下 :

当n=1时,perm(R)为它本身;
当n>1时,perm(R)由perm(R1)(r1)、perm(R2)(r2)。。。perm(Rn)(rn)组成。

#include <iostream>
#include <vector>

using namespace std;

vector< vector<int> > res;

void perm(vector<int> num,int n)
{
    if(n==1)
    {
        res.push_back(num);
        return;
    }
    
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
L型组件填图问题 1.问题描述 设B是一个n×n棋盘,n=2k,(k=1,2,3,…)。用分治法设计一个算法,使得:用若干个L型条块可以覆盖住B的除一个特殊方格外的所有方格。其中,一个L型条块可以覆盖3个方格。且任意两个L型条块不能重叠覆盖棋盘。 例如:如果n=2,则存在4个方格,其中,除一个方格外,其余3个方格可被一L型条块覆盖;当n=4时,则存在16个方格,其中,除一个方格外,其余15个方格被5个L型条块覆盖。 2. 具体要求 输入一个正整数n,表示棋盘的大小是n*n的。输出一个被L型条块覆盖的n*n棋盘。该棋盘除一个方格外,其余各方格都被L型条块覆盖住。为区别出各个方格是被哪个L型条块所覆盖,每个L型条块用不同的数字或颜色、标记表示。 3. 测试数据(仅作为参考) 输入:8 输出:A 2 3 3 7 7 8 8 2 2 1 3 7 6 6 8 4 1 1 5 9 9 6 10 4 4 5 5 0 9 10 10 12 12 13 0 0 17 18 18 12 11 13 13 17 17 16 18 14 11 11 15 19 16 16 20 14 14 15 15 19 19 20 20 4. 设计与实现的提示 对2k×2k的棋盘可以划分成若干块,每块棋盘是原棋盘的子棋盘或者可以转化成原棋盘的子棋盘。 注意:特殊方格的位置是任意的。而且,L型条块是可以旋转放置的。 为了区分出棋盘上的方格被不同的L型条块所覆盖,每个L型条块可以用不同的数字、颜色等来标记区分。 5. 扩展内容 可以采用可视化界面来表示各L型条块,显示其覆盖棋盘的情况。 经典的递归问题, 这是我的大代码, 只是本人很懒, 不想再优化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值