python双线性插值代码

双线性插值用于图像缩放,根据目标尺寸与原图尺寸的比例确定缩放因子,计算每个目标像素点对应原图的浮点坐标,采用周围4个整数像素点的权重加权平均计算值。此实现效率较低,有待优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       双线性插值其实就是 根据需要resize的大小和原始图像的大小之比得到缩放比例,然后在求目标图的每一个像素的时候,根据这个比例找到其应该在原图的位置,这个位置可能会是小数,就用到该位置周围4个整数像素点的值来计算该位置的像素,然后离该位置距离近的点所占该位置值的权重要大一些.实现代码如下,效率有点低,待改进

from PIL import Image
from datetime import datetime
import matplotlib.pyplot as plt
import numpy as np 
import math
import os

img_path = r'C:\Users\king\Pictures\简历\微信图片_20190731154219.jpg'
img_arr = np.array(Image.open(img_path), np.uint8)

target_size = (800, 600, 3)
cur_size = img_arr.shape
ratio_x, ratio_y = target_size[0] / cur_size[0], target_size[1] / cur_size[1]

def cal(x, y, c):
	t_left_x, t_left_y = math.floor(x), math.floor(y)

	p1 = (t_left_x+1 - x)*img_arr[t_left_x, t_left_y, c] + (x - t_left_x)*img_arr[t_left_x+1, t_left_y
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值