基于神经网络的信息安全技术研究

目录

基于神经网络的信息安全技术研究... 1

一.引言... 1

(一)信息安全的重要性和挑战... 1

二.神经网络基础... 2

(一)神经网络的基本原理和结构... 2

(二)卷积神经网络... 2

(三)激活函数... 3

(四)优化算法... 3

三.基于神经网络的网络安全技术... 4

(一)入侵检测系统的分类... 4

(二)入侵检测系统的数据集和评估方法... 4

(三)基于dCNN的入侵检测方法... 5

四.神经网络在信息安全中的挑战和未来发展方向... 7

(一)神经网络在信息安全中面临的挑战和问题... 7

(二)未来发展方向:基于神经网络的信息安全技术的前景... 7

五.结论... 8

(一)论文主要内容总结... 8

(二)基于神经网络的信息安全技术的重要性和潜力强调... 8

参 考 文 献... 9

基于神经网络的信息安全技术研究

[摘要]本论文深入研究了基于神经网络的信息安全技术。特别关注了卷积神经网络(CNN)的应用,论文还讨论了入侵检测系统的分类、数据集和评估方法,包括常用的性能指标。提出了一种基于dCNN的入侵检测方法,包括数据预处理模块、有效特征自学习模块和分类器模块。但基于神经网络的信息安全技术将继续为保护网络和数据的安全性做出重要贡献。

[关键词]CNN;神经网络;信息安全;入侵检测

Research on Information Security Technology Based on Neural Networks

Abstract: This paper conducts an in-depth exploration of neural network-based information security technology. Special attention is given to the application of Convolutional Neural Networks (CNN). The paper also discusses intrusion detection system classification, datasets, and evaluation methods, incorporating common performance metrics. It proposes an intrusion detection method based on dCNN (deep Convolutional Neural Network), comprising a data preprocessing module, an effective feature self-learning module, and a classifier module. Neural network-based information security technology will continue to make significant contributions to safeguarding network and data security.

Keywords: CNN; neural network; information security; intrusion detection.

一.引言

(一)信息安全的重要性和挑战

信息安全已经成为当今数字化时代的核心问题。随着企业、政府机构和个人数据的数字化存储和传输量迅速增加,恶意行为者和黑客的威胁也日益增多。这些威胁可能包括数据泄露、入侵、恶意软件攻击、身份盗窃等,对个人隐私和敏感信息的保护已成为至关重要的任务。信息安全不仅仅关乎数据的完整性和机密性,还关系到商业机密、国家安全和公共信任。

神经网络是一种受到生物神经系统启发的计算模型,具有自学习和适应性能力。这使得神经网络在信息安全领域中具有广泛的应用潜力。神经网络可以用于入侵检测,通过学习正常网络流量的模式,检测异常行为;它们还可以用于恶意软件检测,识别新的恶意软件变种;此外,神经网络还可以用于增强身份验证系统的安全性。

二.神经网络基础

(一)神经网络的基本原理和结构

神经网络是一种受到生物神经系统启发的计算模型,用于解决各种复杂的问题,包括模式识别、分类、回归等。它的基本原理是通过多层次的神经元(节点)相互连接和信息传递来进行计算。以下是神经网络的基本组成部分:

1.神经元(节点):神经网络的基本构建单元,每个神经元接收输入,对其进行加权和激活,然后产生输出。

2.层次结构:神经网络通常包括输入层、隐藏层和输出层。输入层接收原始数据,隐藏层执行中间计算,输出层生成最终结果。

3.权重(Weights):权重是每个连接的参数,它们用于加权输入信号以计算神经元的输出。权重在训练过程中进行调整,以使网络能够学习数据的模式。

4.激活函数:激活函数决定神经元是否激活(输出非零值),并以何种方式激活。常见的激活函数包括Sigmoid、ReLU(Rectified Linear Unit)和Tanh等。

5.前馈(Feedforward):数据从输入层经过一系列的权重和激活函数传递到输出层,这一过程称为前馈。

6.反向传播(Backpropagation):反向传播是训练神经网络的关键方法。它使用损失函数来度量网络的性能,然后根据损失函数的梯度来调整权重,以最小化损失。[1]

(二)卷积神经网络

全连接神经网络通常容易出现参数爆炸问题,特别是当输入的样本数据特征较多时,尽管可以通过减少隐藏节点的个数来避免这个问题,但隐藏节点个数的减少通常也意味着分类准确率的下降。CNN中3个重要的核心概念是局部感知、参数共享和池化。

局部感知意味着隐藏层中的神经元无需和所有的输入像素进行连接,不同的隐藏层神经元只需要和输入像素中的某个特定区域进行连接。在CNN中,局部感知是由卷积层的卷积运算实现的。卷积运算通过卷积核在输入数据上滑窗实现。卷积运算如式(1)所示。其中:x为输入的样本数据,w为核函数的权重值,b为偏置值,f为激活函数。

                       

                   

为了进一步减少神经网络的参数,CNN引入参数共享。参数共享的本质就是所有的隐藏神经元共享一套权值参数和偏置参数,这是基于图像不同部分的统计特性通常是一样的。一套权值参数和偏置参数生成一幅特征图,一幅特征图的表示能力是有限的,因此一般在实际应用中,一个卷积层会生成多幅特征图。在图 3中,2个卷积层输出的特征图的数量分别为32和64。

池化过程则主要是为了对特征进行降维。池化操作一般计算某个局部区域多个特征的平均值或最大值,因此卷积神经网络中池化操作分为最大池化和平均池化。本文提出的方法采用的是最大池化操作。

(三)激活函数

常见的激活函数有sigmoid、tanh、ReLU等。本文基于ADFA-LD、NSL-KDD等标准入侵检测数据集,比较了dCNN方法分别采用这3种激活函数时模型的学习过程,结果如图 1 所示。图 1a为本文方法在ADFA-LD数据集上的七分类实验的收敛情况,图 1b为本文方法在NSL-KDD数据集上的五分类实验的收敛情况。实验是在保持深度网络其他参数一致的情况下进行的,优化算法采用ADAM,学习速率为1×10-4。从实验结果可以看出,在不同的数据集和不同的分类任务中,对于本文提出的基于dCNN的入侵检测方法,tanh激活函数的学习性能最好,故本文采用tanh作为dCNN的激活函数。

图1 ADFA-LD和NSL-KDD数据集上不同激活函数性能比较

(四)优化算法

ADAM算法是近几年深度学习领域中应用最为广泛的一阶优化算法。Kingma等指出ADAM算法包含了适应性梯度算法和均方根传播算法两者的优点,为不同的参数设计了不同的自适应性学习速率,因而能更快收敛。入侵检测数据通常存在噪声和稀疏性的问题。本文在ADFA-LD标准入侵检测数据集上比较了ADAM算法和随机梯度下降(stochastic gradient descent,SGD)算法的性能。如图2展示了两种优化算法在ADFA-LD数据集上的学习过程。可以看出,不管是在收敛速度还是准确率上,ADAM算法都表现得更好。因而,本文选择ADAM算法作为dCNN模型的优化算法。ADAM的两个重要参数分别为一阶矩估计的指数衰减率β1和二阶矩估计的指数衰减率β2.

图2 ADFA-LD数据集上ADAM和SGD算法性能比较

三.基于神经网络的网络安全技术

(一)入侵检测系统的分类

入侵检测系统的分类如图3所示:

图3   入侵检测的分类

(二)入侵检测系统的数据集和评估方法

1.数据集

需要通过数据集对入侵检测系统的性能进行评估,随着IDS的发展,出现了许多优秀的数据集。目前基于网络的入侵检测数据集主要有DARPA 98、KDD 99、NSL-KDD、UNB ISCX2012、UNSW-NB15和CICIDS2017等。

DARPA 98由林肯实验室(1998和1999)创建,用于网络安全分析。它通过人工注入攻击和正常流量,并因此受到了研究人员的广泛批评,这些攻击和正常流量造成了冗余,以及其他违规行为。

2.评估方法

当前,入侵检测系统的评估主要利用二分类算法的评估方法说明系统的性能,主要采用以下指标。

(1) TPR:真阳性率,在所有实际为恶意样本的数据中,被正确地判断为恶意样本的比率,该指标越高越好;

(2) FPR:假阳性率,在所有实际为良性样本的数据中,被错误地判断为恶意样本的比率,该指标越低越好;

(3) DR:检测率,表示该方法在检测恶意样本的能力方面的性能,该指标越高越好;

(4) Precision:原本为恶意样本的数据占预测为恶意样本数据的比率,该指标越高越好;

(5) ACC:将实例正确地分为良性样本和恶意样本的比率;

(6) AUC:ROC 曲线下的面积即为AUC指标的值,ROC 曲线由TPR 和FPR 计算得到,该指标越高越好.[2]

(三)基于dCNN的入侵检测方法

深度学习能自动从原始数据中学习有用的特征,从而提高分类的准确率。Lecun等[概括了机器学习的基本架构,即特征提取模块和分类模块的组合。本文提出的基于dCNN的深度入侵检测方法也基于此基本架构,其组成如图4所示,主要由3个模块组成:数据预处理模块、有效特征自学习模块和分类器模块。[3]

图4 基于dCNN的入侵检测方法的构架

1.数据预处理模块

数据预处理模块首先对原始数据进行特征化,包括:1)文本特征的数值化和数据特征的标准化等;2)由于原始的入侵数据通常是一维的向量数据,而CNN一般被用来处理二维的图像数据,故需要将原始的一维数据转换为二维的“图像数据”。之所以将“图像数据”打上引号,是因为此处经过转换后的数据样本并非真正的图像数据,但本文借鉴视觉处理的方法对其进行处理。将一维数据转换为二维数据的方法有很多,本文采用基于数据填充的转换方法,其转换过程的伪代码如图5所示。该算法在保留单个初始样本x中所有信息的基础上,对样本进行特征扩展,并使用随机的正态分布来填充扩展出的特征。该方法非常简单,且容易实现,并在实验中获得了相当不错的检测结果。该方法之所以可以取得检测准确率的提升,主要是因为:1)由于该方法是对原始数据样本进行扩维,因而保留了原始数据样本中所有有用信息;2)扩展出的特征增加了数据样本的信息容量,能在一定程度上增加不同类别的数据在样本空间中相隔的距离。

图5 数据转换算法

入侵检测数据的各个特征通常具有不同的取值范围,且不同取值范围之间的数值差异较大,因而在数据预处理阶段需要对其进行标准化。本文采用主流的z-score标准化方法,如式(2)所示。

                           

                          (2)

其中:  

为样本总数,

为标准化前样本数据某一维度的特征值,xi'

为标准化后样本数据对应维度的特征值。[4]

2.dCNN实验

为了验证本文dCNN模型的实际检测效果,基于Tensorflow-GPU实现了模型的代码,并在一块具有3 GB内存的Nvidia GTX 1060 GPU上完成测试。基于ADFA-LD[2]的七分类实验;2)基于NSL-KDD[2]的二分类实验;3)基于NSL-KDD的五分类实验。ADFA-LD数据集属于HIDS数据集,因而实验1可以验证本文方法在基于主机的入侵检测中的检测效果。NSL-KDD数据集属于NIDS数据集,因而通过实验2和3可以验证本文方法在基于网络的入侵检测中的检测效果。在实验2中,NSL-KDD数据集的测试集中有17种攻击是训练集中没有出现过的,可以验证本文方法对未知攻击的检测效果。本文采用的性能指标如式(3)—(6)所示。

                                                        (3)

                                                         (4)

                                                        (5)

                                            (6)

式(3)—(6)中各变量的含义解释如下,其中正例代表攻击数据、负例代表正常数据。

1) 真正例(true positive, TP):预测为正,实际为正;

2) 真负例(true negative, TN):预测为负,实际为负;

3) 假正例(false positive, FP):预测为正,实际为负;

4) 假负例(false negative, FN):预测为负,实际为正;

5) 准确率:被正确分类的样本占所有样本的比例;

6) 查准率:预测出的正例中真正例所占比例;

7) 查全率或召回率:预测出的真正例占实际所有正例的比例;

8) 误报率:预测出的假正例占实际所有负例的比例;

9) F-score:是对查准率和查全率的综合评价。

此外,对于二分类问题,本文还用受试者工作特征(receiver operating characteristic, ROC)曲线来分析检测性能;对于多分类问题,则使用混淆矩阵来直观地展示最终的检测结果

四.神经网络在信息安全中的挑战和未来发展方向

(一)神经网络在信息安全中面临的挑战和问题

尽管神经网络在信息安全领域取得了一定的成功,但它们也面临一些挑战和问题,包括:

1.据不足:神经网络通常需要大量的标记数据来进行训练,但在信息安全领域,可用于训练的数据可能受到限制,尤其是罕见的威胁或攻击类型的数据。

2.对抗性攻击:神经网络容易受到对抗性攻击,攻击者可以通过微小的修改来欺骗网络。对抗性攻击可能对入侵检测和恶意软件检测等任务的准确性产生严重影响。

3.计算资源需求:深度神经网络通常需要大量的计算资源,这可能对资源受限的环境不够友好,如嵌入式系统和移动设备。

4.可解释性:神经网络的内部工作机制通常很难解释,这在信息安全领域中可能会引发担忧,尤其是在法律和法规方面,需要追踪和解释决策过程。

(二)未来发展方向:基于神经网络的信息安全技术的前景

尽管面临挑战,基于神经网络的信息安全技术具有广泛的前景。以下是一些未来的发展方向:

1.深度学习和自动化:随着深度学习技术的不断发展,未来的神经网络将变得更加智能和自动化,可以适应新的威胁和攻击。

2.对抗性防御:研究人员将努力开发对抗性攻击的防御方法,以增强神经网络的安全性。

3.数据增强和生成:利用生成对抗网络(GANs)等技术生成更多标记数据,以克服数据不足的问题。

4.可解释性和透明性:未来的研究将注重提高神经网络的可解释性,以更好地理解其决策过程,同时满足法律和监管要求。

5.实时监测和响应:开发实时监测系统,能够及时检测威胁并采取相应措施,以减小损害。

6.区块链和密码学结合:结合区块链技术和密码学,提供更安全的身份验证和数据传输方式,确保数据的完整性和保密性。

基于神经网络的信息安全技术将在未来继续发展,为保护网络和数据安全提供关键支持。尽管面临挑战,但随着技术的进步和研究的不断深入,我们可以期待更智能、更安全的信息安全解决方案的出现

五.结论

(一)论文主要内容总结

本论文对基于神经网络的信息安全技术进行了广泛而深入的研究,探讨了神经网络在入侵检测、恶意软件检测、网络流量分析和异常检测等信息安全领域的应用。以下是主要内容的总结:

1.在入侵检测方面,神经网络被广泛应用,能够自动识别网络中的异常行为,提高了入侵检测的准确性和效率。

2.恶意软件检测和分类是信息安全中的另一个关键问题,神经网络已经成功应用于这一领域,有助于及时识别和应对恶意软件威胁。

3.神经网络在网络流量分析和异常检测中的应用提供了实时监测和响应的可能性,有助于及早发现潜在的攻击。

此外,本论文还探讨了神经网络的基本原理和结构,以及训练和优化方法,为神经网络在信息安全中的应用提供了基础。[5]

(二)基于神经网络的信息安全技术的重要性和潜力强调

基于神经网络的信息安全技术具有重要性和广阔的潜力,它们为信息安全领域带来了新的工具和方法。以下是对其重要性和潜力的强调:

1.信息安全在数字化时代至关重要,神经网络技术提供了一种创新和高效的途径,用于检测和阻止网络威胁。

2.神经网络的自学习和适应性特性使其能够不断适应不断变化的威胁和攻击,提高了信息安全的鲁棒性。

3.尽管面临一些挑战,如数据不足和对抗性攻击,但未来的发展方向包括更智能、更自动化的技术、数据增强方法、对抗性防御和可解释性的改进。

4.在未来,基于神经网络的信息安全技术将继续为保护网络和数据的安全性做出贡献。这一领域的不断发展将有助于更好地理解、应对和预防各种网络威胁和攻击。[6]

参 考 文 献

[1]肖建平, 龙春, 赵静, 魏金侠, 胡安磊, 杜冠瑶. 基于深度学习的网络入侵检测研究综述[J]. 数据与计算发展前沿, 2021, 3(3): 59-74

[2] 张思聪, 谢晓尧, 徐洋. 基于dCNN的入侵检测方法[J]. 清华大学学报(自然科学版), 2019, 59(1): 44-52. 

[3] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.

[4] KINGMA D, BA J. ADAM: A method for stochastic optimization[J/OL]. (2017-01-30)[2018-05-03]. 

[5] 黄 炜, 秦 霖, 刘晓欣, 等. 网络信息安全治理研究进展:基于国内外法治现状 [J]. 情报杂志, 2020, 39(4):132-139, 29.

[6] ] 胡化猛,马麟 . 人工智能时代计算机信息安全与防护策略 分析[J].信息系统工程,2023(4):77-79.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值