GNN
文章平均质量分 82
vincent_hahaha
haha ha
展开
-
异构图-GTN(Graph Transformer Networks)
上一节的HAN表示异构图的Attention Network,通过手动设置Meta-path,然后聚合不同Meta-path下的节点attention,学到节点最终的表示。但是这个方法是手动选择Meta-path的,因此可能无法捕获每个问题的所有有意义的关系。同样,元路径的选择也会显著影响性能而Graph Transformer Networks是自动聚合Meta-path,同时以端到端的学习方式转换图上的节点表示形式。几个概念τv\tau ^vτv:节点的类型τe\tau^eτe:边的类型AC原创 2021-09-27 19:16:39 · 3528 阅读 · 4 评论 -
异构图HAN
异构图:节点类别的数量加边的类别的数量大于等于2,也就是包含不同类型节点和连接的异构图。下面的图就是一个异构图,包含电影、演员、导演。这里介绍异构图的一个图算法Heterogeneous Graph Attention Network定义异构图:节点的类别 + 边的类别 数量大于2Meta-path 元路径就是连接两个对象的复合关系,是一种广泛使用的捕获语义的结构例如上面的异构图中包含三类节点,演员、电影、导演。(c)图定义了两个Meta-path:movie-actor-movie和movi原创 2021-09-25 20:12:31 · 8849 阅读 · 5 评论 -
图神经网络的分类
图卷积神经网络GCN、GraphSage都属于图卷积神经网络,都是利用节点与节点周围的邻居信息不断的聚合,以学习到节点的高层表示。PATCH-SAN:因为GCN和GraphSage聚合邻居信息时具有排列不变性,而PATCH-SAN是真正利用卷积操作,去完成节点的深层次的学习。Graph Attention NetWorkGAT利用节点之间的attention,求出节点与周围邻居节点的attention系数,然后通过聚合邻居节点得到下一层的特征表示。Graph Auto-encoder输入一张原创 2021-09-25 18:39:26 · 6057 阅读 · 0 评论 -
GraphSage模型cora数据集
创建GraphSage模型:input_size=1433out_size=128num_layers=2agg_func='MEAN'raw_features:原始特征,维度2708 * 1433adj_lists:所有边的连接,格式是:562: {60, 252, 370, 440, 671, 1117, 1183, 1401, 1889, 2014, 2018},sage_layer1:SageLayersage_layer2:SageLayer(layer_size=128,out_原创 2021-09-15 22:04:39 · 976 阅读 · 0 评论 -
GAT模型介绍
在GCN里介绍了处理cora数据集,以及返回的结果:features:论文的属性特征,维度2708 × 1433 2708 \times 14332708×1433,并且做了归一化,即每一篇论文属性值的和为1.labels:每一篇论文对应的分类编号:0-6adj:邻接矩阵,维度2708 × 2708 2708 \times 27082708×2708idx_train:0-139idx_val:200-499idx_test:500-1499这一节介绍GAT模型:GAT模型model:原创 2021-09-02 23:28:31 · 3712 阅读 · 0 评论 -
GCN(二)GCN模型介绍
上一节介绍了处理cora数据集,以及返回的结果:features:论文的属性特征,维度2708×14332708 \times 14332708×1433,并且做了归一化,即每一篇论文属性值的和为1.labels:每一篇论文对应的分类编号:0-6adj:邻接矩阵,维度2708×27082708 \times 27082708×2708idx_train:0-139idx_val:200-499idx_test:500-1499这一节介绍GCN的模型。GCN 模型model:impor原创 2021-09-02 17:55:50 · 7268 阅读 · 3 评论 -
GCN(一)数据集介绍
1.数据集介绍1.1 数据集概述Cora数据集由机器学习论文组成,是近年来图深度学习很喜欢使用的数据集。在数据集中,论文分为以下七类之一:基于案例遗传算法神经网络概率方法强化学习规则学习理论论文的选择方式是,在最终语料库中,每篇论文引用或被至少一篇其他论文引用。整个语料库中有2708篇论文。在词干堵塞和去除词尾后,只剩下1433个独特的单词。文档频率小于10的所有单词都被删除。1.2 数据集组成content文件:content文件包含以下格式的论文描述:<paper_原创 2021-08-31 12:20:07 · 2408 阅读 · 0 评论 -
Graph embedding
为什么要有Graph embedding在图上要表示一个节点,可以使用one-hot来表示,而使用这种方法有两个缺点:如果节点数量比较多,那么n维的one-hot会非常稀疏;使用one-hot丢失了节点在图上的连接信息。DeepWalk为了使用无监督的方式训练每一个节点的embedding,我们会联想到word-embedding的方式,而word-embedding需要语料来训练每一个词的embedding,但是在图上没有一个有序的语料,所以在图上就产生了随机游走的方式来获得序列,利用Wo原创 2021-08-24 11:23:40 · 325 阅读 · 0 评论 -
特征向量中心性
特征向量中心性的基本思想是,一个节点的中心性是相邻节点中心性的函数。也就是说,与你连接的人越重要,你也就越重要。特征向量中心性和点度中心性不同,一个点度中心性高即拥有很多连接的节点,但特征向量中心性不一定高,因为所有的连接者有可能特征向量中心性很低。同理,特征向量中心性高并不意味着它的点度中心性高,它拥有很少但很重要的连接者也可以拥有高特征向量中心性。考虑下面的图,以及相应的5x5的邻接矩阵(Adjacency Matrix),A。A=[0111010100110101010100010]A=\l原创 2021-08-23 16:52:26 · 17659 阅读 · 8 评论 -
图神经网络基本知识
连通图 连通分量1.无向图连通性对于一个无向图,如果任意的节点i能够通过一些边到达节点j,则称之为连通图。连通分量:无向图G的一个极大连通子图称为G的一个连通分量(或连通分支)。连通图只有一个连通分量,即其自身;非连通的无向图有多个连通分量。2.有向图连通性强连通图:给定有向图G=(V,E),并且给定该图G中的任意两个节点u和v,如果节点u和节点v相互可达,即至少存在一条路径可以由节点u开始,到终点节点v结束,那么就称该有向图G是强连通图。弱连通图:若至少有一对节点不满足单向连通,但去掉边原创 2021-08-23 16:28:21 · 1010 阅读 · 0 评论
分享