DGL
文章平均质量分 63
DGL学习
vincent_hahaha
haha ha
展开
-
DGL教程【五】使用自己的数据集
如果想构建自己的数据集,应该继承dgl.data.DGLDataset类,并且实现下面的方法:__getitem__(self,i):得到数据集的第i个数据,__len__(self):数据集的大小process(self):从硬盘加载和处理原始数据这里使用一个小数据集Zachary’s Karate Club network,包含:menbers.csv文件包含每个成员的属性interactions.csv文件包含两个成员的关系import urllib.requestimport原创 2021-11-26 15:34:58 · 4408 阅读 · 6 评论 -
DGL教程【四】使用GNN进行链路预测
在之前的介绍中,我们已经学习了使用GNN进行节点分类,比如预测一个图中的节点所属的类别。这一节中我们将教你如何进行链路预测,比如预测任意两个节点之间是不是存在边。本节你将学到:构建一个GNN的链路预测模型在一个小的DGL数据集上训练和评估模型链路预测在很多应用中,例如社交推荐、商品推荐以及知识图谱补全中都存在链路预测,就是判断两个节点之间是不是存在一条边。本节将使用论文引用关系数据集,判断两篇论文是否存在引用关系。这个教程将链路预测定义为一个二分类的问题:将图中的每个边都视为正样本对不原创 2021-11-26 14:40:07 · 7324 阅读 · 17 评论 -
DGL教程【三】构建自己的GNN模块
有时,利用现有的GNN模型进行堆叠无法满足我们的需求,例如我们希望通过考虑节点重要性或边权值来发明一种聚合邻居信息的新方法。本节将介绍:DGL的消息传递API自己实现一个GraphSage卷积模型消息传递GNNDGL遵循消息传递范式,很多GNN模型往往都遵循下面的这个架构:DGL 称M(l)M^{(l)}M(l)为一个消息函数,∑\sum∑是一个聚合函数,U(l)U^{(l)}U(l)是一个更新函数。需要注意的是这里的∑\sum∑可以代表任意一个方法,而不仅仅是一个求和函数。例如大名鼎原创 2021-11-25 21:35:33 · 1863 阅读 · 0 评论 -
DGL教程【二】如何通过DGL表示一个Graph
通过本节,将学到:从头开始用DGL构建一个Graph给Graph添加节点和边的特征获取一些图的信息,如节点的度或节点的其他属性将DGL graph 转换到另一个graph加载、保存DGL graph从头构建GraphDGL通过DGLGraph对象来创建一个有向图,我们可以直接通过指定节点,以及src节点和target节点来创建一个graph。节点的id从0开始。例如下面一段代码构建了一个有向星型图,共有6个节点,中心节点的id是0,边分别是从中心到叶子节点。import dglimp原创 2021-11-24 22:02:15 · 3315 阅读 · 1 评论 -
DGL教程【一】使用Cora数据集进行分类
首先安装dglpip install dgl -i https://pypi.douban.com/simple/加载Cora数据集import dgl.datadataset = dgl.data.CoraGraphDataset()print('Number of categories:', dataset.num_classes)这样会自动下载Cora数据集到Extracting file to C:\Users\vincent\.dgl\cora_v2\目录下,输出结果如下:Dow原创 2021-11-24 21:12:19 · 6917 阅读 · 8 评论
分享