hdoj2084 数塔

题解:

DP的经典题目之一,从塔的最底层一直往上走,到达顶部后途中累加的和最大的就是所要求的值。在这里,可以设置二维数组dp[i][j],表示“走到第i层、第j个元素时可以获得的最大值”。这里有两个关键的地方:

  • 考虑的对象是“走到了某个位置”,而不是“从某个位置开始走”。这也是DP比如背包问题里面的一个重要思想。这样的话,状态转移方程就是:
dp[i][j] += max(dp[i+1][j], dp[i+1][j+1])
  • 因为从塔的结构来说是斜的,但是从二维数组来说,上述方程只是取了下方和右下方的较大的值,所以要给第2维多留一个空间,里面的值初始化为0,否则会出现数组越界。


代码(156MS, 1836K):

#include <iostream>
#include <fstream>
#include <cstring>      // memset
#include <algorithm>    // max
using namespace std;

const int maxn(101);
int dp[maxn][maxn];

int main() {
//  ifstream cin("in.txt");
    int casenum;
    cin >> casenum;
    while (casenum--) {
        memset(dp, 0, sizeof dp);
        int depth;
        cin >> depth;
        for (int i = 1; i <= depth; ++i) {
            for (int j = 1; j <= i; ++j) {
                cin >> dp[i][j];
            }
        }

        for (int i = depth - 1; i >= 1; --i) {
            for (int j = 1; j <= i; ++j) {
                dp[i][j] += max(dp[i + 1][j], dp[i + 1][j + 1]);
            }
        }
        cout << dp[1][1] << endl;
    }
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/VitaLemon__/article/details/50959962
文章标签: 动态规划
个人分类: 【OJ】动态规划
想对作者说点什么? 我来说一句
相关热词

没有更多推荐了,返回首页

关闭
关闭
关闭