在数学建模中,数据拟合是非常基础的一个操作,在人文社科研究中,所做的实证工作大部分是要得到两个或多个变量之间的变动关系,包括方向和程度。因此,学习数据拟合是简单的,带来的回报却是丰厚的。
数据关系可以分为线性的和非线性的,操作方法分为直接借助matlab自带的curve fitting tool和自己编写程序,但无论是哪一种方法,我都建议先绘制散点图看一下数据分布情况,给数据类型下一个初步的判断。
matlab自带的curve fitting tool非常便捷,我使用的2010年版功能没有2016年版本的强大,但胜在体积小,不会太占内存。如果对这个工具箱是刚需的话,还是建议安装2016版本的。因此,下面有些图片是我截图2010的,有些是网上copy下来2016的。操作方式都是输入变量矩阵之后,输入cftool回车,调出工具箱页面。
然后在data里面设置x和y,再去fitting里面,找出适合的函数。我这个很明显是线性回归,所以我就选择了polynomiel,然后plot一下图像就出来了。
我看到网上2016版本的matlab的工具箱页面还有result等选项,界面挺清晰的,偷一张图放这里。