社科小白的数学建模学习笔记——matlab数据拟合

这篇博客介绍了社科背景的学习者如何在MATLAB中进行数据拟合,特别是线性回归。作者通过polyfit函数展示了线性最小二乘拟合,并提到了fittype和inline等其他拟合方法,强调了直接编码的灵活性。
摘要由CSDN通过智能技术生成
	 在数学建模中,数据拟合是非常基础的一个操作,在人文社科研究中,所做的实证工作大部分是要得到两个或多个变量之间的变动关系,包括方向和程度。因此,学习数据拟合是简单的,带来的回报却是丰厚的。
	 数据关系可以分为线性的和非线性的,操作方法分为直接借助matlab自带的curve fitting tool和自己编写程序,但无论是哪一种方法,我都建议先绘制散点图看一下数据分布情况,给数据类型下一个初步的判断。
	 matlab自带的curve fitting tool非常便捷,我使用的2010年版功能没有2016年版本的强大,但胜在体积小,不会太占内存。如果对这个工具箱是刚需的话,还是建议安装2016版本的。因此,下面有些图片是我截图2010的,有些是网上copy下来2016的。操作方式都是输入变量矩阵之后,输入cftool回车,调出工具箱页面。

在这里插入图片描述
然后在data里面设置x和y,再去fitting里面,找出适合的函数。我这个很明显是线性回归,所以我就选择了polynomiel,然后plot一下图像就出来了。
在这里插入图片描述
我看到网上2016版本的matlab的工具箱页面还有result等选项,界面挺清晰的,偷一张图放这里。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值