python scipy.optimize curve_fit 多高斯拟合

本文介绍了一种使用Python的Scipy库进行双峰高斯曲线拟合的方法。通过定义高斯函数并利用curve_fit函数,实现了对给定数据集的有效拟合,并通过PyLab进行了结果展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >





import numpy as np
import pylab as plt
#import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from scipy import asarray as ar,exp

x = ar(range(10))
y = ar([0,1,2,3,4,5,4,3,2,1])


def gaussian(x,*param):
    return param[0]*np.exp(-np.power(x - param[2], 2.) / (2 * np.power(param[4], 2.)))+\
           param[1]*np.exp(-np.power(x - param[3], 2.) / (2 * np.power(param[5], 2.)))


popt,pcov = curve_fit(gaussian,x,y,p0=[3,4,3,6,1,1])
print popt
print pcov

plt.plot(x,y,'b+:',label='data')
plt.plot(x,gaussian(x,*popt),'ro:',label='fit')
plt.legend()
plt.show()



评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值