排序:
默认
按更新时间
按访问量

KL距离(相对熵)

KL距离(相对熵) KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对熵(Relative Entropy)。它衡量的是相同事件空间里的两个概率分布的差异情况。其物理意义是:在相同事件空间里,概率分布P(x)对应的每个事件...

2018-05-13 14:26:01

阅读数:142

评论数:0

Introduction to Recurrent Neural Networks

What is RNN The networks are recurrent because they performance same computations for all the elements of a sequence of input, and the output of eac...

2018-04-21 17:21:28

阅读数:77

评论数:0

SIX: Python 2 and 3 Compatibility Library

SIX 是一个开源的Python库, 其设计目的是为了解决Python2和3的不兼容问题. 众所周知, Python 3是跟Python 2不兼容的, 其语法, 类库都有不一致的地方, 这给python程序员带来了极大不便, 但是, SIX的出世可以解决这一问题, 使用了SIX, 你的p...

2018-03-20 21:46:50

阅读数:230

评论数:0

30秒学习Keras

Keras 是开源的深度学习/神经网络框架, 其使用Python语言开发的, 底层引擎可以是Tensorfow, CNTK或者Theano. 其设计初衷是为了可以快速将想法转化为可以实验的代码, 因此其易用性在当前的深度学习框架里是屈指可数的. 正因为这一特质, Keras也非常适合深度学习...

2018-02-25 20:57:45

阅读数:147

评论数:0

QUIC 简析

QUIC简析 一 QUIC - Quick UDP Internet Connection. QUIC 最初是Google公司为了改进HTTP/HTTPS通信所提出的架构于UDP之上的通信协议. 不过随着QUIC技术的演进, 它已经成为一种介于TCP和UDP之间的通用的传输协议. 自...

2018-02-15 20:08:24

阅读数:432

评论数:0

PCA在图像处理上的应用

PCA(Principal Component Analysis), 也就是主成分分析, 是数据分析的常用方法, 其原理是: 反映对象特征的多个属性往往存在线形相关, 所以可以找到一个合理的方法, 对此多个属性变换为线性无关的另一组属性, 变换后的属性个数小于最初的属性的个数, 也就是起到了...

2018-01-12 22:03:04

阅读数:2133

评论数:0

方阵的特征值与特征向量

定义: 设AA是nn阶方阵, 如果数λ\lambda和非零向量xx使关系式 Ax=λx Ax = \lambda x 成立, 那么, λ\lambda称为方阵AA的特征值, 非零向量xx称为AA的对应于特征值λ\lambda的特征向量. 上式也可以写为: (Ax−λE)x=0 (Ax...

2018-01-01 09:56:54

阅读数:193

评论数:0

漫谈 WebRTC 一: 何谓Simulcast, WebRTC中的Simulcast

写作本文的初衷是: 前些日子为WebRTC设计Simulcast, 把所有相关的代码又重新阅读了一遍, 想着WebRTC代码结构复杂, 代码量巨大, Google的release迭代改动快, 改动量大, 代码常读常忘, 忘了再读, 也许应该写点啥东西保存起来。 适之先生说, 要使你所得印象变成...

2017-11-05 20:13:00

阅读数:1686

评论数:0

FEC and RTX

FEC 的 Pattern定义为 [m,k],n=m+k,m是数据包的个数,k是FEC包的个数,n为两者之和 [m, k], n = m+k, m是数据包的个数, k是FEC包的个数, n为两者之和 nn个包为一个Group, 在这个Group中, 任意丢k个包, 都可以通过...

2017-10-14 16:46:05

阅读数:402

评论数:0

Introduction to Convolutional Neural Network

What’s the problem Full Connected layers to process image does not account the spatial structure of the images. Complicated images with multi-channel...

2017-09-30 22:27:47

阅读数:584

评论数:0

Tensorflow for Machine Intelligence 读后

TensorFlow for Machine Intelligence 的四位作者都是一线的程序员, 其中Danijar Hafner 更是Google Tensorflow 研发团队的成员. 不过可惜TensorFlow 正处于迅速发展期, API和内部结构的变化极为距离, 图书在成文...

2017-09-10 09:08:45

阅读数:1076

评论数:0

Common Sense of 信息安全

信息安全是非常复杂的课题, 普通人对信息安全的认识往往存在很大的误区, 试总结几条: 保密的密码算法是危险而且愚蠢的原因如下: 1. 如果使用保密的密码算法, 其代码代码逆向抵抗力弱, 攻击者可以通过逆向工程的方法来破解. 2. 算法的保密性弱, 内部的工程师有可能泄露其细节...

2017-08-25 21:48:21

阅读数:316

评论数:0

CNN(卷积神经网络)在iOS上的使用

Apple 在iOS11上推出了CoreML和架构在CoreML之上的Vision, 这样为CNN(卷积神经网络)在iOS设备上的应用铺平了道路。 将CoreML模型加载到App 让你的App集成CoreML模型非常简单, 将模型文件(*.mlmodel)拖进工程即可. 在Xcode中可...

2017-08-14 22:43:05

阅读数:896

评论数:0

略谈OpenGL中的共享上下文(EGL Context)

OpenGL渲染中有一个线程相关的上下文(EGL Context), OpenGL所创建的资源, 其实对程序员可见的仅仅是ID而已, 其内容依赖于这个上下文, 有时候为了方便起见, 在某个线程中创建了上下文之后, 所有的OpenGL操作都转到此线程来调用. 这样在简单的2d/3d 渲染...

2017-07-31 00:51:17

阅读数:2647

评论数:0

深入浅出ARKit - 几何图形的构成

OpenGL中描述几何图形的方法是用顶点(vertice)和指号(indice), 在SceneKit中也完全一样. SCNGeometrySourceSCNGeometrySource 在SceneKit中就是顶点的集合. 这些点用来构成一个几何图形. 下面的代码就创建了一个SCNGeom...

2017-07-26 23:01:11

阅读数:1380

评论数:3

深入浅出 ARKit - Basic Concept

什么是现实增强(Augmented Reality)现实增强是在真实世界中加入计算机所构建的虚拟物体, 通过对真实世界所采集的信息的分析, 虚拟物体可以跟真实世界中的物体互动, 比如遮挡, 碰撞等, 让使用者产生错觉, 如同虚拟物体真实存在于世界. 此技术涉及很多复杂技术, 包括3D建模,...

2017-07-23 14:16:46

阅读数:414

评论数:0

WebRTC 中的Quality Scaler

Quality Scaler 是WebRTC中根据视频质量, 自适应调整分辨率的方案, 其思路大体是: 观察视频编码的丢帧率和qp的变化, 确定Capturer中的video adaptor 是否要调整编码的分辨率. 其代码位于: $(ROOT)/src/webrtc/modules/vi...

2017-07-18 20:36:35

阅读数:764

评论数:1

iOS CI 自动生成IPA

使用CI脚本为iOS 应用生成IPA, 常用的方法是使用xcodebuild生成app之后, 再调用xcrun -sdk iphoneos -v PackageApplication $APP_NAME -o $IPA_NAME不幸的是, xcode更新到8.3之后, PackageApplica...

2017-07-18 19:52:53

阅读数:406

评论数:0

神经网络笔记 - Regularization

神经网络的过拟合(Over fitting) 是神经网络学习的年点, 常规的解决方案是增加学习的样本数, 但是训练样本的搜集往往比较困难,而且样本数增加, 学习成本也随之提高. 另一个比较简单的方法来减少过拟合就是Regularization. Regularization 的方法有多...

2017-07-15 06:11:25

阅读数:377

评论数:0

神经网络笔记 - 交叉熵续

为什么选择交叉熵(Why Cross-Entropy)为了解决学习速度下降的问题,我们希望 ∂C∂wj=xj(a−y) \frac{\partial C}{\partial w_j}=x_j(a-y) ∂C∂b=(a−y) \frac{\partial C}{\partial b} = (a...

2017-06-11 14:04:10

阅读数:259

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭