博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅
1、毕业设计:2026年计算机专业毕业设计选题汇总(建议收藏)✅
2、大数据毕业设计:2026年选题大全 深度学习 python语言 JAVA语言 hadoop和spark(建议收藏)✅
🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅
1、项目介绍
- 技术栈:Python语言、Django框架(后端)、MySQL数据库、协同过滤推荐算法(含基于用户+基于物品双模式)、Echarts可视化(评分分析/词云/省份占比等)、HTML+Bootstrap(前端界面)
- 核心功能:旅游景点个性化推荐(双协同过滤算法驱动)、景点详情交互(点赞/收藏/评分)、多维度数据可视化分析(评分/分类/地域分布)、用户中心(收藏/评论管理)、后台数据管理(用户/景点/权限管控)
- 研究背景:互联网时代旅游信息爆炸式增长,用户面临“信息过载”痛点——海量景点数据分散在各平台,手动筛选效率低,难以快速找到匹配自身偏好的目的地;传统推荐多依赖热门度,缺乏个性化(如亲子游用户被推荐探险景点),亟需“基于用户行为的智能推荐+数据可视化”系统解决。
- 研究意义:技术层面,整合Django后端、协同过滤算法(解决个性化推荐)、Echarts可视化(提升数据可读性),构建“数据采集-推荐-交互-分析”完整技术链;用户层面,为游客提供精准推荐(如根据历史评分推荐相似景点),为管理者提供市场洞察(如热门省份分布);应用层面,可作为旅游平台子系统或毕业设计,兼具实用价值与学术展示性。
2、项目界面
-
首页—旅游景点排序

-
旅游景点详情页—点赞、收藏、评分、景点详情信息

-
基于用户推荐、基于物品推荐

-
景点评分与数量分析

-
景点词云图分析

-
旅游景点年份分析

-
省份占比分析

-
旅游景点分类

-
个人中心----我的收藏、评论、评分

-
后台数据管理

3、项目说明
本项目是基于Python+Django开发的智能旅游推荐系统,核心依托协同过滤推荐算法(双模式)实现个性化景点推荐,结合Echarts可视化与用户交互功能,构建“推荐精准化、数据可视化、管理便捷化”的旅游信息服务平台,旨在解决旅游信息过载与推荐同质化问题。
(1)系统架构与技术逻辑
- 架构设计:采用“后端算法驱动+前端交互展示”模式,分层清晰:
- 数据层(MySQL):存储核心数据——用户信息(账号、偏好)、景点数据(名称、详情、分类、地域、评分)、用户行为数据(点赞、收藏、评分记录)、推荐日志;
- 算法层:集成协同过滤双算法——基于用户的协同过滤(找相似用户偏好)、基于物品的协同过滤(找相似景点特征),输出个性化推荐结果;
- 后端(Django):负责业务逻辑——用户认证(注册登录)、算法调用(触发推荐)、数据接口开发(提供景点/推荐/可视化数据)、后台管理功能(用户/景点管控);
- 前端(HTML+Bootstrap):构建响应式界面,实现景点展示、推荐结果呈现、用户交互(点赞/收藏)、Echarts可视化图表渲染;
- 核心流程:用户行为(评分/收藏)存入MySQL→Django调用协同过滤算法(分析用户偏好/景点相似度)→生成推荐列表→前端展示推荐结果+可视化分析→用户在个人中心管理行为记录→管理员通过后台维护数据。
(2)核心功能模块详解
① 协同过滤推荐模块(技术核心)
双算法驱动个性化推荐,解决“千人一面”问题:
- 基于用户的协同过滤:
- 逻辑:找到与目标用户“行为相似”的用户群体(如都喜欢“人文古迹”且评分倾向一致),将相似用户高评分的景点推荐给目标用户;
- 应用场景:新用户(行为数据少,可依赖相似群体偏好);
- 基于物品的协同过滤:
- 逻辑:分析景点特征相似度(如“故宫”与“长城”都属于“北京+人文古迹+高评分”),向浏览过A景点的用户推荐相似的B景点;
- 应用场景:景点数据丰富时(通过特征快速匹配);
- 推荐结果展示:“基于用户推荐/基于物品推荐”页面分别呈现两种算法结果,标注推荐理由(如“与您相似的100位用户都喜欢”“与您收藏的‘西湖’相似”),支持一键跳转景点详情。
② 景点展示与交互模块(用户体验核心)
- 首页—旅游景点排序:
- 功能:默认按“综合热度”(评分+收藏量)排序展示景点,支持切换排序维度(如“评分从高到低”“最新上线”),卡片式展示景点名称、缩略图、评分、所属省份,点击进入详情;
- 旅游景点详情页:
- 核心交互:用户可对景点进行“点赞”(增加热度)、“收藏”(存入个人中心)、“评分”(1-5星,为推荐算法提供数据);
- 信息展示:包含景点详细介绍(地址、开放时间、特色)、用户评论区(显示其他用户评分与留言);
③ 多维度可视化分析模块(数据洞察)
通过Echarts将景点数据转化为直观图表,辅助用户与管理者决策:
- 景点评分与数量分析:柱状图展示“不同评分区间的景点数量”(如4-5星景点120个,3-4星80个),直观呈现整体口碑;
- 景点词云图分析:从景点详情与用户评论中提取高频词(如“山水”“历史”“亲子”),词云大小反映出现频率,帮助用户快速识别景点特色;
- 旅游景点年份分析:折线图展示“各年份新增景点数量”,揭示旅游市场发展趋势(如近5年自然景观类景点增长快);
- 省份占比分析:饼图展示“各省份景点数量占比”(如四川占15%,云南占12%),明确热门旅游区域;
- 旅游景点分类:柱状图对比“不同类型景点数量”(自然景观/人文古迹/主题乐园等),辅助用户定位兴趣类别。
④ 个人中心与用户管理模块(个性化与安全)
- 个人中心:
- 功能:登录用户可查看“我的收藏”(已收藏景点列表,支持取消收藏)、“我的评论”(历史留言记录)、“我的评分”(对景点的评分记录),方便跟踪个人偏好;
- 注册登录:基于Django认证系统,用户通过账号密码注册登录,保障个人行为数据安全,未登录用户仅可浏览景点,无法使用点赞/收藏/推荐功能。
⑤ 后台数据管理模块(管理员专属)
- 核心功能:
- 景点管理:增删改查景点数据(如录入新景点、更新开放时间、删除失效景点);
- 用户管理:查看注册用户列表,管理用户权限(如禁用违规账号),查看用户行为日志(如“用户A近7天评分5个景点”);
- 推荐管理:监控推荐算法效果(如推荐点击率),手动调整推荐权重(如临时提升某热门景点推荐优先级);
- 价值:保障数据准确性与系统秩序,为算法优化提供依据。
4、核心代码
# -*-coding:utf-8-*-
import os
os.environ["DJANGO_SETTINGS_MODULE"] = "recommend.settings"
import django
django.setup()
from item.models import *
from math import sqrt, pow
import operator
from django.db.models import Subquery, Q, Count
# from django.shortcuts import render,render_to_response
class UserCf:
# 获得初始化数据
def __init__(self, all_user):
self.all_user = all_user
# 通过用户名获得列表,仅调试使用
def getItems(self, username1, username2):
return self.all_user[username1], self.all_user[username2]
# 计算两个用户的皮尔逊相关系数
def pearson(self, user1, user2): # 数据格式为:旅游景点id,浏览此
sum_xy = 0.0 # user1,user2 每项打分的成绩的累加
n = 0 # 公共浏览次数
sum_x = 0.0 # user1 的打分总和
sum_y = 0.0 # user2 的打分总和
sumX2 = 0.0 # user1每项打分平方的累加
sumY2 = 0.0 # user2每项打分平方的累加
for movie1, score1 in user1.items():
if movie1 in user2.keys(): # 计算公共的浏览次数
n += 1
sum_xy += score1 * user2[movie1]
sum_x += score1
sum_y += user2[movie1]
sumX2 += pow(score1, 2)
sumY2 += pow(user2[movie1], 2)
if n == 0:
# print("p氏距离为0")
return 0
molecule = sum_xy - (sum_x * sum_y) / n # 分子
denominator = sqrt((sumX2 - pow(sum_x, 2) / n) * (sumY2 - pow(sum_y, 2) / n)) # 分母
if denominator == 0:
return 0
r = molecule / denominator
return r
# 计算与当前用户的距离,获得最临近的用户
def nearest_user(self, current_user, n=1):
distances = {}
# 用户,相似度
# 遍历整个数据集
for user, rate_set in self.all_user.items():
# 非当前的用户
if user != current_user:
distance = self.pearson(self.all_user[current_user], self.all_user[user])
# 计算两个用户的相似度
distances[user] = distance
closest_distance = sorted(
distances.items(), key=operator.itemgetter(1), reverse=True
)
# 最相似的N个用户
print("closest user:", closest_distance[:n])
return closest_distance[:n]
# 给用户推荐旅游景点
def recommend(self, username, n=3):
recommend = {}
nearest_user = self.nearest_user(username, n)
for user, score in dict(nearest_user).items(): # 最相近的n个用户
for movies, scores in self.all_user[user].items(): # 推荐的用户的旅游景点列表
if movies not in self.all_user[username].keys(): # 当前username没有看过
if movies not in recommend.keys(): # 添加到推荐列表中
recommend[movies] = scores*score
# 对推荐的结果按照旅游景点
# 浏览次数排序
return sorted(recommend.items(), key=operator.itemgetter(1), reverse=True)
# 基于用户的推荐
def recommend_by_user_id(user_id):
user_prefer = UserTagPrefer.objects.filter(user_id=user_id).order_by('-score').values_list('tag_id', flat=True)
current_user = User.objects.get(id=user_id)
# 如果当前用户没有打分 则看是否选择过标签,选过的话,就从标签中找
# 没有的话,就按照浏览度推荐15个
if current_user.rate_set.count() == 0:
if len(user_prefer) != 0:
movie_list = xiangmu.objects.filter(tags__in=user_prefer)[:15]
else:
movie_list = xiangmu.objects.order_by("-c9")[:15]
return movie_list
# 选取评分最多的10个用户
users_rate = Rate.objects.values('user').annotate(mark_num=Count('user')).order_by('-mark_num')
user_ids = [user_rate['user'] for user_rate in users_rate]
user_ids.append(user_id)
users = User.objects.filter(id__in=user_ids)#users 为评分最多的10个用户
all_user = {}
for user in users:
rates = user.rate_set.all()#查出10名用户的数据
rate = {}
# 用户有给旅游景点打分 在rate和all_user中进行设置
if rates:
for i in rates:
rate.setdefault(str(i.movie.id), i.mark)#填充旅游景点数据
all_user.setdefault(user.username, rate)
else:
# 用户没有为旅游景点打过分,设为0
all_user.setdefault(user.username, {})
user_cf = UserCf(all_user=all_user)
recommend_list = [each[0] for each in user_cf.recommend(current_user.username, 15)]
movie_list = list(xiangmu.objects.filter(id__in=recommend_list).order_by("-c9")[:15])
other_length = 15 - len(movie_list)
if other_length > 0:
fix_list = xiangmu.objects.filter(~Q(rate__user_id=user_id)).order_by('-collect')
for fix in fix_list:
if fix not in movie_list:
movie_list.append(fix)
if len(movie_list) >= 15:
break
return movie_list
# 计算相似度
def similarity(movie1_id, movie2_id):
movie1_set = Rate.objects.filter(movie_id=movie1_id)
# movie1的打分用户数
movie1_sum = movie1_set.count()
# movie_2的打分用户数
movie2_sum = Rate.objects.filter(movie_id=movie2_id).count()
# 两者的交集
common = Rate.objects.filter(user_id__in=Subquery(movie1_set.values('user_id')), movie=movie2_id).values('user_id').count()
# 没有人给当前旅游景点打分
if movie1_sum == 0 or movie2_sum == 0:
return 0
similar_value = common / sqrt(movie1_sum * movie2_sum)#余弦计算相似度
return similar_value
#基于物品
def recommend_by_item_id(user_id, k=15):
# 前三的tag,用户评分前三的旅游景点
user_prefer = UserTagPrefer.objects.filter(user_id=user_id).order_by('-score').values_list('tag_id', flat=True)
user_prefer = list(user_prefer)[:3]
print('user_prefer', user_prefer)
current_user = User.objects.get(id=user_id)
# 如果当前用户没有打分 则看是否选择过标签,选过的话,就从标签中找
# 没有的话,就按照浏览度推荐15个
if current_user.rate_set.count() == 0:
if len(user_prefer) != 0:
movie_list = xiangmu.objects.filter(tags__in=user_prefer)[:15]
else:
movie_list = xiangmu.objects.order_by("-c9")[:15]
print('from here')
return movie_list
# most_tags = Tags.objects.annotate(tags_sum=Count('name')).order_by('-tags_sum').filter(movie__rate__user_id=user_id).order_by('-tags_sum')
# 选用户最喜欢的标签中的旅游景点,用户没看过的30部,对这30部旅游景点,计算距离最近
un_watched = xiangmu.objects.filter(~Q(rate__user_id=user_id), tags__in=user_prefer).order_by('?')[:30] # 看过的旅游景点
watched = Rate.objects.filter(user_id=user_id).values_list('movie_id', 'mark')
distances = []
names = []
# 在未看过的旅游景点中找到
for un_watched_movie in un_watched:
for watched_movie in watched:
if un_watched_movie not in names:
names.append(un_watched_movie)
distances.append((similarity(un_watched_movie.id, watched_movie[0]) * watched_movie[1], un_watched_movie))#加入相似的旅游景点
distances.sort(key=lambda x: x[0], reverse=True)
print('this is distances', distances[:15])
recommend_list = []
for mark, movie in distances:
if len(recommend_list) >= k:
break
if movie not in recommend_list:
recommend_list.append(movie)
# print('this is recommend list', recommend_list)
# 如果得不到有效数量的推荐 按照未看过的旅游景点中的热度进行填充
print('recommend list', recommend_list)
return recommend_list
if __name__ == '__main__':
# similarity(2003, 2008)
print(recommend_by_item_id(1799))
5、源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看【用户名】、【专栏名称】就可以找到我啦🍅
感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻



被折叠的 条评论
为什么被折叠?



