poj 1845 Sumdiv(同余模公式)

http://poj.org/problem?id=1845

2^3 = 8. 
The natural divisors of 8 are: 1,2,4,8. Their sum is 15. 
15 modulo 9901 is 15 (that should be output). 

题意:求A^B,由于A和B很大,所以这里用到同余模公式

思路:根据唯一分解定理A = p1^a1*p2^a2.....*pn^an,

则A^B=(p1^a1*p2^a2.....*pn^an)^B = p1^(a1*B)*p2^(a2*B).....*pn^(an*B)

所有正约数和S = (1+p1+p1^2+...p1^(a1*B)) + (1+p2+p2^2+...p2^(a2*B)) + ... (1+pn+pn^2+...pn^(an*B))

可见ss = (1+p+p^2+...p^n)是等比数列的和,递归二分求该等比数列的和

当n为奇数时,一共有偶数项

ss = (1+p^(n/2+1)) + p* (1+p^(n/2+1)) + ... p^(n/2) *  (1+p^(n/2+1));

    =  (1+p+p^2+...p^(n/2)) * (1+p^(n/2+1))

当n为偶数时,一共有奇数项

ss = (1+p^(n/2)+1) * p * (1+p^(n/2)+1) * ... p^(n/2-1) * (1+p^(n/2)+1) + p^(n/2);

    = (1+p+p^2+...p^(n/2-1)) * (1+p^(n/2+1)) + (p^(n/2))

同余模公式:

(a+b)%mod = (a%mod+b%mod)%mod; 

(a*b)%mod = (a%mod*b%mod)%mod; 

根据同余模公式即可求的结果

#include <iostream>
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <limits>
#include <stack>
#include <vector>
#include <map>

using namespace std;

#define N 1002000
#define INF 0xfffffff
#define PI acos (-1.0)
#define EPS 1e-8
#define met(a, b) memset (a, b, sizeof (a))

typedef long long LL;

LL a;
int isprim[N] = {1, 1}, prim[N], cnt = 0, t, b;

struct node
{
    LL p, a;
} stu[N];

void Init ()
{///素数打表
    for (int i=2; i<1001000; i++)
    {
        if (!isprim[i])
        {
            prim[cnt++] = i;

            for (int j=i+i; j<1001000; j+=i)
                isprim[j] = 1;
        }
    }
}

void Fenjie ()
{///唯一分解定理
    t = 0;

    for (int i=0; i<cnt; i++)
    {
        int k = 0;
        if (a%prim[i]==0)
        {
            while (a%prim[i]==0)
            {
                k++;
                a /= prim[i];
            }

            stu[t].a = k;
            stu[t++].p = prim[i]%9901;
        }
        if (a==1) break;
    }

    if (a!=1)
        stu[t].p = a%9901, stu[t++].a = 1;
}

LL Quick_Pow (int m, int n)
{///快速幂
    LL temp = 1;
    while (n)
    {
        if (n&1)
            temp = temp * m % 9901;
        n >>= 1;
        m = m * m % 9901;
    }
    return temp;
}


LL sum (int p, LL n)
{///等比数列递归二分求和
    if (n==0) return 1;

    if (n%2) return (sum (p, n/2) * (1+Quick_Pow(p, n/2+1)))%9901;
    else return (sum (p, n/2-1) * (1+Quick_Pow(p, n/2+1)) + Quick_Pow(p, n/2))%9901;
}

int main ()
{
    Init();

    while (scanf ("%I64d %d", &a, &b) != EOF)
    {
        met (stu, 0);

        if (a==1 || !a)
        {
            puts ("1");
            continue;
        }
        
        Fenjie();
        LL ans = 1;

        for (int i=0; i<t; i++)
            ans = (ans * sum(stu[i].p, stu[i].a*b)%9901) % 9901;

        printf ("%I64d\n", ans%9901);
    }
    return 0;
}

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/w144215160044/article/details/51554575
个人分类: 数论基础
上一篇poj 3292 Semi-prime H-numbers (打表 同余模运算)
下一篇poj 2115 C Looooops (扩展欧几里得)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭