2020-10-24 Intel Openvino安装和跑demo遇到的一些坑

Intel Openvino安装和跑demo遇到的一些坑

WIN10安装过程中遇到的一些坑

我最开始了解到这个工具的时候是真的不了解深度学习,图像识别,完全就是小白一个,但因为自己的无意中在论文中了解到了这个工具包。我开始心动了,想着可以利用一些已经训练好的模型来跑一些目标检测、语义分割等一些模型。瞬间感觉高大上有木有。
我最开始安装的教程就是按照因特尔官方的安装教程进行的。大家一定要在下载openvino前把所需要的CMAKE,Visual Studio安装好。然后还有python的安装,python一般安装的版本3.6和3.7就可以了。
注意:openvino的安装一定要安装在默认的目录中。
在这里插入图片描述

建议安装过程中好像会要求安装annaconda,这个一定要安装,这样对于执行过程中会遇到的一些可能需要安装的python的依赖包会比较方便。(真的在命令行操作一些东西真的很麻烦)
问题1
如果遇到问题时,首先考虑自己是否是在管理员模式下运行的cmd,这个坑了我好久
问题2
在搜索一些问题时,请注意可以关注一下 openvino的中文社区,里面有很多不错的分享,尤其是哪个openvino早餐栏目,我也是遇到很多坑后才发现很多问题真的很简单.
问题3
如果遇到在跑官网提示的一些验证demo的时候,出现一些错误,当时忘了截图,首先应该想到的是自己的cmd下的用户名到底有没有中文,这个这个里面一定不能含有中文

问题4
一定要设置环境变量 setupvars.bat,需要把脚本里面的环境变量自己手动到系统里面更新一下,如果在import openvino出错了,很可能就是openvino的路径没有加到cvsdkpath去.
问题5
在 Windows 上运行 bin\setupvars.bat 文件以设置环境变量,这个文件夹中的该行命令,相当于临时建立了一个环境变量,运行完之后会出现
cd C:\Program Files (x86)\IntelSWTools\openvino_2020.4.287\bin
setupvars.bat
vinotest是博主自己创建的一个环境名
出现OpenVINO environment initialized就说明环境设置好了,就可以跑demo了。

下面运行的demo是需要一个下载的过程的。

先去看自己的有哪些demo。运行如下命令
python “C:\Program Files (x86)\IntelSWTools\openvino_2020.4.287\deployment_tools\open_model_zoo\tools\downloader\downloader.py” --print_all
然后需要下载下面的模型就是
python “C:\Program Files (x86)\IntelSWTools\openvino_2020.4.287\deployment_tools\open_model_zoo\tools\downloader\downloader.py” --name face-detection-adas-0001

运行一个object_detection_demo_ssd_async。在这里插入图片描述

cd C:\ProgramFiles(x86)\IntelSWTools\openvino_2020.4.287\deployment_tools\inference_engine\demos\python_demos\object_detection_demo_ssd_async
然后在
python object_detection_demo_ssd_async.py -m D:\face-detection-adas-0001\FP16\face-detection-adas-0001.xml -i cam(如果这个不行的话你也来可以用下面的命令,同样是建立在你已经OpenVINO environment initialized的下面)

##第二种方法:(注意一定要加双引号)
python “C:\Program Files (x86)\IntelSWTools\openvino_2020.4.287\deployment_tools\inference_engine\demos\python_demos\object_detection_demo_ssd_async\object_detection_demo_ssd_async.py” -m D:\face-detection-adas-0001\FP16\face-detection-adas-0001.xml -i cam

model.lst文档的内容,就是你可以用下述里面的训练后的模型,及下载的xml。和bin文件,去跑demo

face-detection-adas-???
face-detection-adas-binary-???
face-detection-retail-???
pedestrian-and-vehicle-detector-adas-???
pedestrian-detection-adas-???
pedestrian-detection-adas-binary-???
pelee-coco
person-detection-retail-0013
retinanet-tf
vehicle-detection-adas-???
vehicle-detection-adas-binary-???
vehicle-license-plate-detection-barrier-???
ssd-resnet34-1200-onnx

大家有什么其他的问题、可以给我留言喔,我会经常看的哈!

手把手讲授如何搭建成功OpenVINO框架,并且使用预训练模型快速开发超分辨率、道路分割、汽车识别、人脸识别、人体姿态和行人车辆分析。得益于OpenVINO框架的强大能力,这些例子都能够基于CPU达到实时帧率。 课程的亮点在于在调通Demo的基础上更进一步:一是在讲Demo的时候,对相关领域问题进行分析(比如介绍什么是超分辨率,有什么作用)、预训练模型的来龙去脉(来自那篇论文,用什么训练的)、如何去查看不同模型的输入输出参数、如何编写对应的接口参数进行详细讲解;二是基本上对所有的代码进行重构,也就是能够让例子独立出来,并且给出了带有较详细注释的代码;三是注重实际运用,将Demo进一步和实时视频处理框架融合,形成能够独立运行的程序,方便模型落地部署;四是重难点突出、注重总结归纳,对OpenVINO基本框架,特别是能够提高视频处理速度的异步机制和能够直接部署解决实际问题的骨骼模型着重讲解,帮助学习理解;五是整个课程准备精细,每一课都避免千篇一律,前一课有对后一课的预告,后一课有对前一课的难点回顾,避免学习过程中出现突兀;六是在适当的时候拓展衍生,不仅讲OpenVINO解决图像处理问题,而且还补充图像处理的软硬选择、如何在手机上开发图像处理程序等内容,帮助拓展视野,增强对行业现状的了解。 基本提纲: 1、课程综述、环境配置 2、OpenVINO范例-超分辨率(super_resolution_demo) 3、OpenVINO范例-道路分割(segmentation_demo) 4、OpenVINO范例-汽车识别(security_barrier_camera_demo) 5、OpenVINO范例-人脸识别(interactive_face_detection_demo) 6、OpenVINO范例-人体姿态分析(human_pose_estimation_demo) 7、OpenVINO范例-行人车辆分析(pedestrian_tracker_demo) 8、NCS和GOMFCTEMPLATE 9、课程小结,资源分享
©️2020 CSDN 皮肤主题: 1024 设计师:上身试试 返回首页