【Flink】Flink 状态管理

一、前言

有状态的计算是流处理框架要实现的重要功能,因为稍复杂的流处理场景都需要记录状态,然后在新流入数据的基础上不断更新状态。下面的几个场景都需要使用流处理的状态功能:

  • 数据流中的数据有重复,想对重复数据去重,需要记录哪些数据已经流入过应用,当新数据流入时,根据已流入过的数据来判断去重。
  • 检查输入流是否符合某个特定的模式,需要将之前流入的元素以状态的形式缓存下来。比如,判断一个温度传感器数据流中的温度是否在持续上升。
  • 对一个时间窗口内的数据进行聚合分析,分析一个小时内某项指标的75分位或99分位的数值。

一个状态更新和获取的流程如下图所示,一个算子子任务接收输入流,获取对应的状态,根据新的计算结果更新状态。一个简单的例子是对一个时间窗口内输入流的某个整数字段求和,那么当算子子任务接收到新元素时,会获取已经存储在状态中的数值,然后将当前输入加到状态上,并将状态数据更新。

二、状态类型

Flink有两种基本类型的状态:托管状态(Managed State)和原生状态(Raw State)。

两者的区别:Managed State是由Flink管理的,Flink帮忙存储、恢复和优化,Raw State是开发者自己管理的,需要自己序列化。

具体区别有:

  • 从状态管理的方式上来说,Managed State由Flink Runtime托管,状态是自动存储、自动恢复的,Flink在存储管理和持久化上做了一些优化。当横向伸缩,或者说修改Flink应用的并行度时,状态也能自动重新分布到多个并行实例上。Raw State是用户自定义的状态。
  • 从状态的数据结构上来说,Managed State支持了一系列常见的数据结构,如ValueState、ListState、MapState等。Raw State只支持字节,任何上层数据结构需要序列化为字节数组。使用时,需要用户自己序列化,以非常底层的字节数组形式存储,Flink并不知道存储的是什么样的数据结构。
  • 从具体使用场景来说,绝大多数的算子都可以通过继承Rich函数类或其他提供好的接口类,在里面使用Managed State。Raw State是在已有算子和Managed State不够用时,用户自定义算子时使用。

对Managed State继续细分,它又有两种类型:Keyed State和Operator State。

为了自定义Flink的算子,可以重写Rich Function接口类,比如RichFlatMapFunction。使用Keyed State时,通过重写Rich Function接口类,在里面创建和访问状态。对于Operator State,还需进一步实现CheckpointedFunction接口。

2.1、Keyed State

Flink 为每个键值维护一个状态实例,并将具有相同键的所有数据,都分区到同一个算子任务中,这个任务会维护和处理这个key对应的状态。当任务处理一条数据时,它会自动将状态的访问范围限定为当前数据的key。因此,具有相同key的所有数据都会访问相同的状态。

需要注意的是键控状态只能在 KeyedStream 上进行使用,可以通过 stream.keyBy(...) 来得到 KeyedStream

Flink 提供了以下数据格式来管理和存储键控状态 (Keyed State):

  • ValueState:存储单值类型的状态。可以使用 update(T) 进行更新,并通过 T value() 进行检索。
  • ListState:存储列表类型的状态。可以使用 add(T)addAll(List) 添加元素;并通过 get() 获得整个列表。
  • ReducingState:用于存储经过 ReduceFunction 计算后的结果,使用 add(T) 增加元素。
  • AggregatingState:用于存储经过 AggregatingState 计算后的结果,使用 add(IN) 添加元素。
  • FoldingState:已被标识为废弃,会在未来版本中移除,官方推荐使用 AggregatingState 代替。
  • MapState:维护 Map 类型的状态。

假设我们正在开发一个监控系统,当监控数据超过阈值一定次数后,需要发出报警信息:

import java.util

import org.apache.commons.compress.utils.Lists
import org.apache.flink.api.common.functions.RichFlatMapFunction
import org.apache.flink.api.common.state.{ListState, ListStateDescriptor}
import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.scala._
import org.apache.flink.util.Collector


/**
  * @author w1992wishes 2020/7/20 19:45
  */
class ThresholdWarning(threshold: Long, numberOfTimes: Int) extends RichFlatMapFunction[(String, Long), (String, util.ArrayList[Long])] {

  // 通过ListState来存储非正常数据的状态
  private var abnormalData: ListState[Long] = _

  override def open(parameters: Configuration): Unit = {
    // 创建StateDescriptor
    val abnormalDataStateDescriptor = new ListStateDescriptor[Long]("abnormalData", classOf[Long])
    // 通过状态名称(句柄)获取状态实例,如果不存在则会自动创建
    abnormalData = getRuntimeContext.getListState(abnormalDataStateDescriptor)
  }

  override def flatMap(value: (String, Long), out: Collector[(String, util.ArrayList[Long])]): Unit = {
    val inputValue = value._2
    // 如果输入值超过阈值,则记录该次不正常的数据信息
    if (inputValue >= threshold) abnormalData.add(inputValue)
    val list = Lists.newArrayList(abnormalData.get.iterator)
    // 如果不正常的数据出现达到一定次数,则输出报警信息
    if (list.size >= numberOfTimes) {
      out.collect((value._1 + " 超过指定阈值 ", list))
      // 报警信息输出后,清空状态
      abnormalData.clear()
    }
  }
}

object KeyedStateDetailTest extends App {
  val env = StreamExecutionEnvironment.getExecutionEnvironment
  val dataStreamSource = env.fromElements(
    ("a", 50L), ("a", 80L), ("a", 400L),
    ("a", 100L), ("a", 200L), ("a", 200L),
    ("b", 100L), ("b", 200L), ("b", 200L),
    ("b", 500L), ("b", 600L), ("b", 700L))

  dataStreamSource
    .keyBy(_._1)
    .flatMap(new ThresholdWarning(100L, 3)) // 超过100的阈值3次后就进行报警
    .printToErr()
  env.execute("Managed Keyed State")
}

2.2、Operator State

Operator State可以用在所有算子上,每个算子子任务或者说每个算子实例共享一个状态,流入这个算子子任务的数据可以访问和更新这个状态。

算子状态不能由相同或不同算子的另一个实例访问。

Flink为算子状态提供三种基本数据结构:

  • ListState:存储列表类型的状态。
  • UnionListState:存储列表类型的状态,与 ListState 的区别在于:如果并行度发生变化,ListState 会将该算子的所有并发的状态实例进行汇总,然后均分给新的 Task;而 UnionListState 只是将所有并发的状态实例汇总起来,具体的划分行为则由用户进行定义。
  • BroadcastState:用于广播的算子状态。如果一个算子有多项任务,而它的每项任务状态又都相同,那么这种特殊情况最适合应用广播状态。

假设此时不需要区分监控数据的类型,只要有监控数据超过阈值并达到指定的次数后,就进行报警:

import org.apache.flink.api.common.functions.RichFlatMapFunction
import org.apache.flink.api.common.state.{ListState, ListStateDescriptor}
import org.apache.flink.api.common.typeinfo.{TypeHint, TypeInformation}
import org.apache.flink.runtime.state.{FunctionInitializationContext, FunctionSnapshotContext}
import org.apache.flink.streaming.api.checkpoint.CheckpointedFunction
import org.apache.flink.streaming.api.scala._
import org.apache.flink.util.Collector

import scala.collection.mutable.ListBuffer
import scala.collection.JavaConversions._

object OperatorStateDetail extends App {
  val env = StreamExecutionEnvironment.getExecutionEnvironment
  // 开启检查点机制
  env.enableCheckpointing(1000)
  env.setParallelism(1)
  // 设置并行度为1
  val dataStreamSource = env.fromElements(
    ("a", 50L), ("a", 80L), ("a", 400L),
    ("a", 100L), ("a", 200L), ("a", 200L),
    ("b", 100L), ("b", 200L), ("b", 200L),
    ("b", 500L), ("b", 600L), ("b", 700L))
  dataStreamSource
    .flatMap(new OperatorStateDetailThresholdWarning(100L, 3))
    .printToErr()
  env.execute("Managed Operator State")
}

class OperatorStateDetailThresholdWarning(threshold: Long, numberOfTimes: Int) extends RichFlatMapFunction[(String, Long), (String, ListBuffer[(String, Long)])] with CheckpointedFunction {

  // 正常数据缓存
  private var bufferedData: ListBuffer[(String, Long)] = ListBuffer[(String, Long)]()

  // checkPointedState
  private var checkPointedState: ListState[(String, Long)] = _

  override def flatMap(value: (String, Long), out: Collector[(String, ListBuffer[(String, Long)])]): Unit = {
    val inputValue = value._2
    // 超过阈值则进行记录
    if (inputValue >= threshold) {
      bufferedData += value
    }
    // 超过指定次数则输出报警信息
    if (bufferedData.size >= numberOfTimes) {
      // 顺便输出状态实例的hashcode
      out.collect((checkPointedState.hashCode() + "阈值警报!", bufferedData))
      bufferedData.clear()
    }
  }

  override def snapshotState(context: FunctionSnapshotContext): Unit = {
    // 在进行快照时,将数据存储到checkPointedState
    checkPointedState.clear()
    for (element <- bufferedData) {
      checkPointedState.add(element)
    }
  }

  override def initializeState(context: FunctionInitializationContext): Unit = {
    // 注册ListStateDescriptor
    val descriptor = new ListStateDescriptor[(String, Long)](
      "buffered-abnormalData", TypeInformation.of(new TypeHint[(String, Long)]() {})
    )

    // 从FunctionInitializationContext中获取OperatorStateStore,进而获取ListState
    checkPointedState = context.getOperatorStateStore.getListState(descriptor)

    // 如果是作业重启,读取存储中的状态数据并填充到本地缓存中
    if (context.isRestored) {
      for (element <- checkPointedState.get()) {
        bufferedData += element
      }
    }
  }
}

三、状态横向扩展

状态的横向扩展问题主要是指修改Flink应用的并行度,确切的说,每个算子的并行实例数或算子子任务数发生了变化,应用需要关停或启动一些算子子任务,某份在原来某个算子子任务上的状态数据需要平滑更新到新的算子子任务上。

Flink的Checkpoint就是一个非常好的在各算子间迁移状态数据的机制。算子的本地状态将数据生成快照(snapshot),保存到分布式存储(如HDFS)上。横向伸缩后,算子子任务个数变化,子任务重启,相应的状态从分布式存储上重建(restore)。

对于Keyed State和Operator State这两种状态,他们的横向伸缩机制不太相同。由于每个Keyed State总是与某个Key相对应,当横向伸缩时,Key总会被自动分配到某个算子子任务上,因此Keyed State会自动在多个并行子任务之间迁移。对于一个非KeyedStream,流入算子子任务的数据可能会随着并行度的改变而改变。如上图所示,假如一个应用的并行度原来为2,那么数据会被分成两份并行地流入两个算子子任务,每个算子子任务有一份自己的状态,当并行度改为3时,数据流被拆成3支,或者并行度改为1,数据流合并为1支,此时状态的存储也相应发生了变化。对于横向伸缩问题,Operator State有两种状态分配方式:一种是均匀分配,另一种是将所有状态合并,再分发给每个实例上。

四、检查点机制

为了使 Flink 的状态具有良好的容错性,Flink 提供了检查点机制 (CheckPoints) 。通过检查点机制,Flink 定期在数据流上生成 checkpoint barrier ,当某个算子收到 barrier 时,即会基于当前状态生成一份快照,然后再将该 barrier 传递到下游算子,下游算子接收到该 barrier 后,也基于当前状态生成一份快照,依次传递直至到最后的 Sink 算子上。当出现异常后,Flink 就可以根据最近的一次的快照数据将所有算子恢复到先前的状态。

4.1、开启检查点

默认情况下 checkpoint 是禁用的。通过调用 StreamExecutionEnvironmentenableCheckpointing(n) 来启用 checkpoint,里面的 n 是进行 checkpoint 的间隔,单位毫秒。

Checkpoint 其他的属性包括:

  • 精确一次(exactly-once)对比至少一次(at-least-once):你可以选择向 enableCheckpointing(long interval, CheckpointingMode mode) 方法中传入一个模式来选择使用两种保证等级中的哪一种。对于大多数应用来说,精确一次是较好的选择。至少一次可能与某些延迟超低(始终只有几毫秒)的应用的关联较大。
  • checkpoint 超时:如果 checkpoint 执行的时间超过了该配置的阈值,还在进行中的 checkpoint 操作就会被抛弃。
  • checkpoints 之间的最小时间:该属性定义在 checkpoint 之间需要多久的时间,以确保流应用在 checkpoint 之间有足够的进展。如果值设置为了 5000,无论 checkpoint 持续时间与间隔是多久,在前一个 checkpoint 完成时的至少五秒后会才开始下一个 checkpoint。
  • 并发 checkpoint 的数目: 默认情况下,在上一个 checkpoint 未完成(失败或者成功)的情况下,系统不会触发另一个 checkpoint。这确保了拓扑不会在 checkpoint 上花费太多时间,从而影响正常的处理流程。不过允许多个 checkpoint 并行进行是可行的,对于有确定的处理延迟(例如某方法所调用比较耗时的外部服务),但是仍然想进行频繁的 checkpoint 去最小化故障后重跑的 pipelines 来说,是有意义的。
  • externalized checkpoints: 你可以配置周期存储 checkpoint 到外部系统中。Externalized checkpoints 将他们的元数据写到持久化存储上并且在 job 失败的时候不会被自动删除。这种方式下,如果你的 job 失败,你将会有一个现有的 checkpoint 去恢复。更多的细节请看 Externalized checkpoints 的部署文档
  • 在 checkpoint 出错时使 task 失败或者继续进行 task:他决定了在 task checkpoint 的过程中发生错误时,是否使 task 也失败,使失败是默认的行为。 或者禁用它时,这个任务将会简单的把 checkpoint 错误信息报告给 checkpoint coordinator 并继续运行。
  • 优先从 checkpoint 恢复(prefer checkpoint for recovery):该属性确定 job 是否在最新的 checkpoint 回退,即使有更近的 savepoint 可用,这可以潜在地减少恢复时间(checkpoint 恢复比 savepoint 恢复更快)。
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 每 1000ms 开始一次 checkpoint
env.enableCheckpointing(1000);
// 高级选项:
// 设置模式为精确一次 (这是默认值)
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
// 确认 checkpoints 之间的时间会进行 500 ms
env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);
// Checkpoint 必须在一分钟内完成,否则就会被抛弃
env.getCheckpointConfig().setCheckpointTimeout(60000);
// 同一时间只允许一个 checkpoint 进行
env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
// 开启在 job 中止后仍然保留的 externalized checkpoints
env.getCheckpointConfig().enableExternalizedCheckpoints(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
// 允许在有更近 savepoint 时回退到 checkpoint
env.getCheckpointConfig().setPreferCheckpointForRecovery(true);

4.2、保存点机制

保存点机制 (Savepoints) 是检查点机制的一种特殊的实现,它允许通过手工的方式来触发 Checkpoint,并将结果持久化存储到指定路径中,主要用于避免 Flink 集群在重启或升级时导致状态丢失。示例如下:

# 触发指定id的作业的Savepoint,并将结果存储到指定目录下
bin/flink savepoint :jobId [:targetDirectory]

五、状态后端

Flink 提供了多种 state backends,它用于指定状态的存储方式和位置。

状态可以位于 Java 的堆或堆外内存。取决于 state backend,Flink 也可以自己管理应用程序的状态。为了让应用程序可以维护非常大的状态,Flink 可以自己管理内存(如果有必要可以溢写到磁盘)。默认情况下,所有 Flink Job 会使用配置文件 flink-conf.yaml 中指定的 state backend。

但是,配置文件中指定的默认 state backend 会被 Job 中指定的 state backend 覆盖。

5.1、状态管理器分类

MemoryStateBackend

默认的方式,即基于 JVM 的堆内存进行存储,主要适用于本地开发和调试。

FsStateBackend

基于文件系统进行存储,可以是本地文件系统,也可以是 HDFS 等分布式文件系统。 需要注意而是虽然选择使用了 FsStateBackend ,但正在进行的数据仍然是存储在 TaskManager 的内存中的,只有在 checkpoint 时,才会将状态快照写入到指定文件系统上。

RocksDBStateBackend

RocksDBStateBackend 是 Flink 内置的第三方状态管理器,采用嵌入式的 key-value 型数据库 RocksDB 来存储正在进行的数据。等到 checkpoint 时,再将其中的数据持久化到指定的文件系统中,所以采用 RocksDBStateBackend 时也需要配置持久化存储的文件系统。之所以这样做是因为 RocksDB 作为嵌入式数据库安全性比较低,但比起全文件系统的方式,其读取速率更快;比起全内存的方式,其存储空间更大,因此它是一种比较均衡的方案。

5.2、配置方式

Flink 支持使用两种方式来配置后端管理器:

第一种方式:基于代码方式进行配置,只对当前作业生效:

// 配置 FsStateBackend
env.setStateBackend(new FsStateBackend("hdfs://namenode:40010/flink/checkpoints"));
// 配置 RocksDBStateBackend
env.setStateBackend(new RocksDBStateBackend("hdfs://namenode:40010/flink/checkpoints"));

配置 RocksDBStateBackend 时,需要额外导入下面的依赖:

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-statebackend-rocksdb_2.11</artifactId>
    <version>1.9.0</version>
</dependency>

第二种方式:基于 flink-conf.yaml 配置文件的方式进行配置,对所有部署在该集群上的作业都生效:

state.backend: filesystem
state.checkpoints.dir: hdfs://namenode:40010/flink/checkpoints

六、状态一致性

6.1、端到端(end-to-end)

在真实应用中,流处理应用除了流处理器以外还包含了数据源(例如 Kafka)和输出到持久化系统。

端到端的一致性保证,意味着结果的正确性贯穿了整个流处理应用的始终;每一个组件都保证了它自己的一致性,整个端到端的一致性级别取决于所有组件中一致性最弱的组件。具体可以划分如下:

  • 内部保证:依赖checkpoint
  • source 端:需要外部源可重设数据的读取位置
  • sink 端:需要保证从故障恢复时,数据不会重复写入外部系统。

而对于sink端,又有两种具体的实现方式:

  • 幂等(Idempotent)写入:所谓幂等操作,是说一个操作,可以重复执行很多次,但只导致一次结果更改,也就是说,后面再重复执行就不起作用了。
  • 事务性(Transactional)写入:需要构建事务来写入外部系统,构建的事务对应着 checkpoint,等到 checkpoint 真正完成的时候,才把所有对应的结果写入 sink 系统中。

对于事务性写入,具体又有两种实现方式:预写日志(WAL)和两阶段提交(2PC)。Flink DataStream API 提供了GenericWriteAheadSink 模板类和 TwoPhaseCommitSinkFunction 接口,可以方便地实现这两种方式的事务性写入。

6.2、Flink+Kafka 实现端到端的 exactly-once语义

端到端的状态一致性的实现,需要每一个组件都实现,对于Flink + Kafka的数据管道系统(Kafka进、Kafka出)而言,各组件怎样保证exactly-once语义呢?

  • 内部:利用checkpoint机制,把状态存盘,发生故障的时候可以恢复,保证内部的状态一致性
  • source:kafka consumer作为source,可以将偏移量保存下来,如果后续任务出现了故障,恢复的时候可以由连接器重置偏移量,重新消费数据,保证一致性
  • sink:kafka producer作为sink,采用两阶段提交 sink,需要实现一个TwoPhaseCommitSinkFunction内部的checkpoint机制。

Flink由JobManager协调各个TaskManager进行checkpoint存储,checkpoint保存在 StateBackend中,默认StateBackend是内存级的,也可以改为文件级的进行持久化保存。

当 checkpoint 启动时,JobManager 会将检查点分界线(barrier)注入数据流;barrier会在算子间传递下去。

每个算子会对当前的状态做个快照,保存到状态后端。对于source任务而言,就会把当前的offset作为状态保存起来。下次从checkpoint恢复时,source任务可以重新提交偏移量,从上次保存的位置开始重新消费数据。

每个内部的 transform 任务遇到 barrier 时,都会把状态存到 checkpoint 里。

sink 任务首先把数据写入外部 kafka,这些数据都属于预提交的事务(还不能被消费);当遇到 barrier 时,把状态保存到状态后端,并开启新的预提交事务。

当所有算子任务的快照完成,也就是这次的 checkpoint 完成时,JobManager 会向所有任务发通知,确认这次 checkpoint 完成。当sink 任务收到确认通知,就会正式提交之前的事务,kafka 中未确认的数据就改为“已确认”,数据就真正可以被消费了。

所以看到,执行过程实际上是一个两段式提交,每个算子执行完成,会进行“预提交”,直到执行完sink操作,会发起“确认提交”,如果执行失败,预提交会放弃掉。

具体的两阶段提交步骤总结如下:

  • 第一条数据来了之后,开启一个 kafka 的事务(transaction),正常写入 kafka 分区日志但标记为未提交,这就是“预提交”, jobmanager 触发 checkpoint 操作,barrier 从 source 开始向下传递,遇到 barrier 的算子将状态存入状态后端,并通知 jobmanager
  • sink 连接器收到 barrier,保存当前状态,存入 checkpoint,通知 jobmanager,并开启下一阶段的事务,用于提交下个检查点的数据
  • jobmanager 收到所有任务的通知,发出确认信息,表示 checkpoint 完成
  • sink 任务收到 jobmanager 的确认信息,正式提交这段时间的数据
  • 外部kafka关闭事务,提交的数据可以正常消费了。

所以也可以看到,如果宕机需要通过StateBackend进行恢复,只能恢复所有确认提交的操作。

七、链接文档

横向扩展相关来于:Flink状态管理详解:Keyed State和Operator List State深度解析
checkpoint 相关来于:Apache Flink v1.10 官方中文文档
状态一致性相关来于:再忙也需要看的Flink状态管理

©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页