#今日论文推荐# 近期六项研究,AI 助力癌症筛查、医学影像
医学影像是现代医疗保健的重要组成部分,提高了各种疾病治疗的准确性、可靠性和发展性。人工智能(AI)也被广泛用于进一步增强这一过程。然而,采用 AI 算法的传统医学图像诊断需要大量的注释作为模型训练的监督信号。为了获得 AI 算法的准确标签——作为临床常规的一部分,放射科医师为每位患者准备放射学报告,然后注释人员使用人工定义的规则和现有的自然语言处理 (NLP) 工具从这些报告中提取和确认结构化标签。提取标签的最终准确性取决于人工工作的质量和各种 NLP 工具。该方法代价高昂,既费力又费时。香港大学(HKU)的一个工程团队开发了一种新方法「REFERS」(审查自由文本报告以进行监督),通过自动采集数百个监督信号,可以将人力成本降低 90% 数以千计的放射学报告同时进行。它的预测精度很高,超过了使用 AI 算法的传统医学图像诊断。论文题目:Generalized Radiograph Representation Learning via Cross-supervision between Images and Free-text Radiology Reports
详细解读:https://www.aminer.cn/research_report/627c92857cb68b460fb614ff?download=false
AMiner链接: